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Abstract

This thesis is concerned with multigraphs and their complexity which is defined and quanti-
fied by the distribution of edge multiplicities. Two random multigraph models are considered.
The first model is random stub matching (RSM) where the edges are formed by randomly
coupling pairs of stubs according to a fixed stub multiplicity sequence. The second model is
obtained by independent edge assignments (IEA) according to a common probability distri-
bution over the edge sites. Two different methods for obtaining an approximate IEA model
from an RSM model are also presented.

In Paper I, multigraphs are analyzed with respect to structure and complexity by using
entropy and joint information. The main results include formulae for numbers of graphs of
different kinds and their complexity. The local and global structure of multigraphs under
RSM are analyzed in Paper II. The distribution of multigraphs under RSM is shown to
depend on a single complexity statistic. The distributions under RSM and IEA are used for
calculations of moments and entropies, and for comparisons by information divergence. The
main results include new formulae for local edge probabilities and probability approximation
for simplicity of an RSM multigraph. In Paper III, statistical tests of a simple or composite
IEA hypothesis are performed using goodness-of-fit measures. The results indicate that even
for very small number of edges, the null distributions of the test statistics under IEA have
distributions that are well approximated by their asymptotic χ

2-distributions. Paper IV
contains the multigraph algorithms that are used for numerical calculations in Papers I-III.
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1 Introduction

1.1 Multigraphs and Applications

Network data involve relational structure representing interactions between actors and are
commonly represented by graphs where the actors are referred to as vertices and the relations
are referred to as edges connecting pairs of vertices. These kinds of data arise in a variety
of fields including computer science, physics, biology, sociology and economics. Statistical
analysis of network data is treated in a book by Kolaczyk (2009) and in survey articles by
Frank (2005, 2009, 2011b). Many other issues concerning network analysis are also found
in the encyclopedia edited by Carrington, Scott and Wasserman (2005), Meyers (2009), and
Scott and Carrington (2011).

In this thesis, mainly undirected graphs representing symmetric relations are considered.
An edge with both ends connected to a single vertex is called an edge-loop (or shortly loop),
and two or more edges connected to the same pair of vertices are called multiple edges. A
simple graph is defined as a graph with no loops or multiple edges and a multigraph is
defined as a graph where loops and multiple edges are permitted. Multigraphs appear
natural in many contexts, for instance social interactions between people during a period of
time, business contacts between companies in a region or industry, and internet connections
between websites or between email users during a period of time. Multigraphs can also be
obtained by different kinds of vertex and edge aggregations. For instance, several simple
graphs representing different binary relations can be aggregated to a multigraph. Examples
and illustrations of such aggregations are given in Paper III.

1.2 Random Multigraph Models

A random multigraph is a family of multigraphs with a probability distribution, and ap-
propriately chosen it can be a model for a considered application. The degree of a vertex
is the number of edges incident to it, with loops counted twice. Various models have been
proposed to study random graphs with fixed or modeled degrees, degree distributions or
expected degrees. The classical random graph introduced by Erdös and Rényi (1959, 1960)
has independent edges and is fully symmetric with a common binomial distribution for the
degree at any vertex. The Erdös-Rényi model has been extensively studied but does not
address many issues present in real network dynamics. Therefore, several related models
have been proposed. Some of these models are briefly reviewed here. A so called small-
world model starts with a ring lattice of vertices and a fixed number of edges at each vertex.
With some probability p, each edge in the graph is randomly moved to another position
according to a procedure called rewiring (Watts and Strogatz, 1998). For p close to 0, the
resulting graph is close to regular while for p close to 1, the resulting graph is close to
the Erdös-Rényi random graph. In another generalized random graph model, each vertex
receives a weight. Given these weights, edges are assigned to sites of vertex pairs indepen-
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dently, and the occupation probabilities for different sites are moderated by the weights of
the vertices. One such model is the preferential attachment model (Barabási and Albert,
1999) in which the growth of the random graph is modeled by adding edges to the already
existing graph in such a way that vertices with large degrees are more likely to be connected
to the newly added edges. Several other methods for generating such random graphs can
be found in Blitzstein and Diaconis (2011), Bayati, Kim and Saberi (2010), Britton, Deijfen
and Martin-Löf (2006), and Chung and Lu (2002).

In this thesis, two main multigraph models are considered. The first model is random
stub matching (RSM) which is also referred to as the configuration model or the pairing
model by e.g. Janson (2009), Bollobàs (1980), and Bender and Canfield (1978). Stubs or
semi-edges are vertices that are paired to an edge. Under RSM, the edges are formed by
randomly coupling pairs of stubs according to a fixed stub multiplicity or degree sequence.
Thus, edge assignments to vertex pair sites are dependent. The second multigraph model
is obtained by independent edge assignments (IEA) according to a common probability
distribution over the sites. Further, two different methods are presented for obtaining an
approximate IEA model from an RSMmodel. The first method is obtained by assuming that
the stubs are randomly generated and independently assigned to vertices, called independent
stub assignments (ISA), and can be viewed as a Bayesian model for the stub multiplicities
under RSM. The second method of obtaining an approximate IEA model is to ignore the
dependency between edges in the RSM model and assume independent edge assignments
of stubs (IEAS). This can be viewed as repeated assignments with replacements of stubs,
whereas RSM is repeated assignments without replacement of stubs.

1.3 Entropy and Information Divergence

Information theoretic tools based on entropy measures can be used to describe, evaluate
and compare different models, and they are particularly useful to analyze variability and
dependence structures in multivariate data of network type. A survey of these information
theoretic tools can be found in Frank (2011a), Gray (2011), and Kullback (1968). The most
common units of information are binary digits (bits) that are based on the binary logarithm.

Entropy can intuitively be understood as a measure of information (uncertainty or vari-
ability) associated with a random variable. Similarily, joint entropy can be understood as
the amount of joint information in two or more random variables. A more technical inter-
pretation of entropy refers to a property of latent codes. Consider repeated independent
outcomes of a random variable with N different possible outcomes and with entropy H.
The outcomes can be assigned binary sequences of different lengths according to a prefix
code that requires in the long run no more than H bits per outcome. This corresponds to
2H latent code sequences with uniform probabilities instead of N outcomes with arbitrary
probabilities. The length of the latent codes, the entropy H, is called the information in
the outcomes, and the extra length that a binary code would require for the outcomes,
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logN −H, is called the redundancy in the outcomes.
Information divergence compares two distributions with positive probabilities over the

same space of N outcomes, P = (P1, . . . , PN ) and Q = (Q1, . . . , QN ). In code language, the
divergence is the number of additional bits required when encoding a random variable with
a distribution P using an alternative distribution Q. Thus, the divergence measures the
expected number of extra bits required to code samples from P when using a code based
on Q, rather than using a code based on P. Formally, the divergence between P and Q is
given by

D(P,Q) =
N
∑

i=1

Pi

[

log
1

Qi

− log
1

Pi

]

=
N
∑

i=1

Pi log
Pi

Qi

,

which is an expected log-likelihood ratio. With Q uniform, the divergence equals the re-
dundancy. The divergence is non-negative and zero only when the two distributions are
equal.

1.4 Complexity Measures

Complexity is a general property considered in many different contexts and used with or
without a specific definition. Complexity in graphs has been given different definitions in
the literature. For instance, Karreman (1955) and Mowshowitz (1968) deal with complexity
properties of graphs used as models for molecules with chemical bonds between atoms. The
complexity concept used in these references is not the same as those in this thesis. However,
a common feature of many complexity concepts is that they seem to be well described and
analyzed by information measures based on entropy.

In this thesis, the complexity of a multigraph is defined and quantified by the distri-
bution of edge multiplicities, that is the frequencies of vertex pairs with different numbers
of multiple edges. Summary measures of this distribution might be of interest as measures
of complexity focusing on special properties of the graph. For instance, the proportion of
multiple sites or the average multiplicity among multiple sites are simple measures of com-
plexity focusing on any kind of deviation from graphs without multiple edges. If loops are
forbidden, this amounts to deviation from graph simplicity. A special class of complexity
measures focuses on the frequency of graphs of different kinds that have the same com-
plexity. Since these numbers might be very large, it is convenient to consider logarithmic
measures which are similar to measures based on entropy. The problems of judging the
complexity of the set of possible multigraphs and of finding distributions of complexity
measures in different random multigraphs are considered.
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2 Summary of Papers

2.1 Paper I: Complexity of Families of Multigraphs

This paper analyzes multigraphs with or without vertex and edge labels with respect to
structure and complexity. Different types of equivalence classes of these multigraphs are
considered and basic occupancy models for multigraphs are used to illustrate different graph
distributions on isomorphism and complexity. The loss of information caused by ignoring
edge and vertex labels is quantified by entropy and joint information. Further, these tools
are used for studying random multigraph properties like uncertainty about outcomes, pre-
dictability of outcomes, partial complexity measures and flatness of probability distribu-
tions. The main findings can be summarized as follows. General formulae for numbers of
graphs in equivalence classes of different kinds are derived and compared to entropies. The
entropy of random multigraphs is decomposed according to complexity, graph structure,
vertex labeling and edge labeling. It is illustrated how complexity can be captured by par-
tial complexity measures and in particular, the loss of information in partial complexity
measures is determined. The probability distribution of number of vertex pairs with no or
single edges is specified and compared to the probability distribution of total complexity.

2.2 Paper II: Random Stub Matching Models of Multigraphs

The local and global structure of multigraphs under RSM are here analyzed and compared
to IEA models using moments, entropies and information divergences. The local structure
of the number of loops at a fixed vertex and the number of edges between two distinct
vertices are analyzed. Their moments are determined as functions of the number of edges,
denotedm, and the degrees of the vertices. Information divergence and entropies are used to
compare the marginal edge multiplicity distributions under RSM and IEA. Approximations
to the entropies are given and numerically investigated. The main results concerning the
distributions of edge multiplicities at local sites can be summarized as follows. The variance
of the number of loops under RSM is shown to be less than the variance under IEA, except
for some degenerate cases. The variance of the number of edges between two distinct vertices
under RSM is generally less than the variance under IEA, except for special cases where
the degrees of the two vertices lie symmetrically around m and are given by m± k for any
non-negative integer k less than a specified limit. For these special cases, the entropies are
much higher for IEA than for RSM, and entropy approximations are very good for the IEA
distributions but not for the RSM distributions. A new formula for the probability of an
arbitrary number of loops at a vertex and the more intricate expression for the probability
of an arbitrary number of edges at any site is found.

The global structure of multigraphs is analyzed by the multivariate distribution of edge
multiplicities. Simplicity and complexity of multigraphs under RSM are investigated. Two
well known asymptotic results for the probability that an RSM multigraph is simple are
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numerically investigated and an alternative way of approximating this probability is pre-
sented. Some other variables that identify simplicity and complexity are proposed and
investigated. The main results concerning the global structure of multigraphs can be sum-
marized as follows. The distributions of multigraphs under RSM are shown to depend on
a single complexity statistic. Entropies of the RSM and IEA distributions of multigraphs
are given and approximate entropies are found using covariance matrices. The exact and
approximate entropies are close to the upper bounds of the exact entropies. The multi-
graph distributions under RSM and IEA are different due to very different ranges. For
regular multigraphs, both the RSM and IEA distributions cluster at the high probability
sites when more edges are added and are therefore less flat for large values of m. The two
asymptotic formulae for the probability that an RSM multigraph is simple do not perform
well for multigraphs with small numbers of vertices and edges and the new proposed ap-
proximation is shown to perform better. The moments of some suggested variables that
identify simplicity and complexity are shown to be more easily handled under IEA, and
the ISA model is introduced as a method to get an IEA distribution. Using this method,
further approximations to the RSM entropy are derived. For uniform or close to uniform
degree distributions, the approximations are good even for small multigraphs, and for skew
distributions they are good for multigraphs with many edges. An asymptotic equipartition
property is shown to give yet another approximation that works reasonably well except for
multigraphs with skew degree sequences and few vertices.

2.3 Paper III: Statistical Analysis of Multigraphs

Statistical properties are here investigated for some probabilistic multigraph models con-
sidered in Papers I and II. Multigraph models defined by RSM and the closely related IEA
models are statistically analyzed by using the multiplicity sequence m of an observed multi-
graph with n vertices and m edges. Two particular kinds of IEA models are investigated,
both of which can be considered as approximations to RSM models. Tests are based on m

mostly by considering goodness-of-fit statistics S of Pearson type and T of likelihood ratio
type. For IEA models it is well known that for large number of edges, these test statistics
have asymptotic χ

2-distributions. Some problems we want to specifically analyze are how
the test statistics behave for small m and compare their behaviour under RSM and IEA.
To that end critical regions of the goodness-of-fit statistics with a given significance level
α according to their asymptotic distributions are chosen, and answers to questions like the
following are searched for. Are the actual significance levels of S and T for small m far from
α? Is the convergence of the cumulative distribution functions of S and T slow or rapid?
Does it depend on specific parameters in the models? Can better approximations to the
actual distributions be obtained by using information about moments and adjustments of
the χ

2-distributions? Can power approximations be made for S or T for small m? How is
power related to parameters of the models? How can RSM be tested and how does RSM
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influence the distributions of the goodness-of-fit statistics? The main results obtained can
briefly be summarized as follows. Even for very small m, the null distributions of the test
statistics S and T under IEA have distributions that are fairly well approximated by their
asymptotic distributions. This holds true for testing simple as well as composite hypotheses
with different asymptotic distributions. The influence of RSM on both test statistics is sub-
stantial for small number of edges and implies a shift of their distributions towards smaller
values compared to what holds true for the null distributions under IEA. Tests of RSM can
be made by critical regions for m, but S and T cannot distinguish RSM from IEA. The
non-null distributions of S and T needed for determining power can be approximated by
adjusted χ

2-distributions. It is possible to judge how powers depend on the parameters of
the IEA models. More details about significance and powers are reported in the paper with
numerous numerical illustrations in plots and tables.

2.4 Paper IV: Some Multigraph Algorithms

In the Papers I–III, there are several illustrations that require developments of algorithms
for the numerical calculations. I have written these algorithms myself. I am sure that more
efficient algorithms can be developed and even found in the computer science literature for
some of the cases.
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Complexity of Families of Multigraphs

Ove Frank and Termeh Shafie

Abstract

This article describes families of finite multigraphs with labeled or unlabeled edges
and vertices. It shows how size and complexity vary for different types of equivalence
classes of graphs defined by ignoring only edge labels or ignoring both edge and vertex
labels. Complexity is quantified by the distribution of edge multiplicities, and different
complexity measures are discussed. Basic occupancy models for multigraphs are used
to illustrate different graph distributions on isomorphism and complexity. The loss of
information caused by ignoring edge and vertex labels is quantified by entropy and joint
information that provide tools for studying properties of and relations between different
graph families.

Keywords: labeled graph, edge multiplicity, complexity measure, entropy, joint infor-
mation, isomorphism.

1 Introduction

Typical applications of graphs consider sequences of edges associated with vertex pairs. For
instance, records of telephone calls, internet connections, money transactions or business
contacts during a period of time and their distributions on pairs of individuals, addresses,
bank accounts or companies are four such applications. Multigraphs appear natural in
many such contexts. A random multigraph is a family of multigraphs with a probability
distribution, and appropriately chosen it can be a model for the application. Information
theoretic tools can be used to describe, evaluate and compare different models, and they are
particularly useful to analyze variability and dependence structures in multivariate data of
network type. A survey of such information theoretic tools based on entropy measures is
given by Frank(2011a). Statistical analysis of network data is treated in a book by Kolaczyk
(2009) and in survey articles by Frank (2005, 2011b). Many other issues concerning network
analysis are also found in the encyclopedia edited by Carrington, Scott and Wasserman
(2005), Meyers (2009), and Scott and Carrington (2011).

Frank: Department of Statistics, Stockholm University, S-106 91 Stockholm, ove.frank@stat.su.se

Shafie: Department of Statistics, Stockholm University, S-106 91 Stockholm, termeh.shafie@stat.su.se
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This article focuses on basic occupancy models adapted to fit multigraphs. The com-
plexity of a multigraph is defined as its multiplicity distribution, that is the frequencies of
vertex pairs with different numbers of multiple edges. The relationships between labeled
and unlabeled graphs, isomorphism and complexity are specified in the next section. The
numbers of graphs of various types are given and illustrated in Sections 3 and 4. Sec-
tion 5 describes different complexity measures. Uniform graph models are analyzed and
illustrated in Sections 6 to 8. Some other models are presented in Section 9 together with
some comments on extensions and references.

2 Basic Concepts and Notation

A finite graph g with n labeled vertices and m labeled edges associates with each edge
an ordered or unordered vertex pair. Let V = {1, . . . , n} and E = {1, . . . ,m} be the
sets of vertices and edges labeled by integers, and denote by R the set of available sites
of vertex pairs for the edges. For directed graphs R = V

2 or R = {(i, j) ∈ V
2 : i 6= j}

depending on whether or not loops are allowed. For undirected graphs we use the site space
R = {(i, j) ∈ V

2 : i ≤ j} or R = {(i, j) ∈ V
2 : i < j} and consider (i, j) with i ≤ j as a

canonical representation for the unordered vertex pair. Let r be the number of sites so that
r = n

2, n(n− 1),
(

n+1

2

)

or
(

n
2

)

for the cases mentioned. The graph g : E → R is an injective
map that is represented by an ordered sequence

g = (g1, . . . , gm) ∈ R
m

of m sites for the edges, or, equivalently, by an ordered partition

M = (Mij : (i, j) ∈ R)

of r disjoint subsets of edges for the sites. Here

Mij = {k ∈ E : gk = (i, j)} for (i, j) ∈ R .

Edges at the same site are called multiple edges, and the number of multiple edges at site
(i, j) is the multiplicity denoted by mij for (i, j) ∈ R. We use the notation

g ↔ M

for the bijection between the two representations of the graph g.
If edges are not distinguished, their labels can be ignored, and order in g is irrelevant.

A representation for the graph with labeled vertices but unlabeled edges is denoted by g∗

and defined by listing the sites in g in some canonical order such as

(1, 1) < (1, 2) < . . . < (1, n) < (2, 1) < (2, 2) < . . . .

2



A convenient shorthand notation is

g∗ = ((i, j)mij : (i, j) ∈ R) .

There is a bijection between the unordered site sequence for the edges and the multiplicity
sequence for the edges:

g∗ ↔ m = (mij : (i, j) ∈ R) .

If both vertex labels and edge labels are ignored, the isomorphic unlabeled graph is rep-
resented by G. The unordered version of M is an unordered partition M∗ of the edge set
into r subsets. The unordered version of the multiplicity sequence m is an unordered par-
tition m∗ of m into r non-negative integers. There is a bijection between this partition and
the sequence of frequencies of sites with multiplicities 0, 1, . . . ,m given by r = (r0, . . . , rm)
where

rk =
∑

(i,j)∈R

I(mij = k) for k = 0, 1, . . . ,m .

Thus,
m∗ ↔ r ,

and the sequence r is called the complexity of the graph g. Figure 1 shows a schematic view
of bijections and other functional relationships between the various concepts introduced
here. The functional relationships comprise canonizing ordering (denoted by ∗), specifying
multiplicities m = m(g), specifying isomorphism G = G(m) which is a function of m, and
specifying complexity r = r(G) which is a function of G. With an abuse of notation we
also write G = G(m) = G(g) and r = r(G) = r(m) = r(g).

0 0.5 1 1.5
0

0.5

1

1.5

g∗

rG

g M

M∗

m∗

m

Figure 1: Relationships between graphs, multiplicity and complexity.
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3 A Numerical Example

The different concepts introduced are illustrated and visualized by considering a simple
example before we turn to general formulae for numbers of graphs and equivalence classes
of different kinds.

Consider undirected graphs with n = 4 labeled vertices and m = 3 labeled edges with
loops not allowed so that r = 6. Here m < r and all partitions of 3 into positive integers
can be used to find the possible multiplicity sequences. Thus the multiplicity sequences
divide into three equivalence classes corresponding to permutations of (3, 0, 0, 0, 0, 0), of
(2, 1, 0, 0, 0, 0), and of (1, 1, 1, 0, 0, 0). In a shorthand notation, these permutations may
be written as ∼305, ∼2104, and ∼1303. The classes have complexity sequences (5, 0, 0, 1),
(4, 1, 1, 0), and (3, 3, 0, 0). The classes consist of 1,2, and 3 non-isomorphic graphs shown in
Figure 2.

Figure 2: Unlabeled graphs according to complexity.

Each of the non-isomorphic graphs comprise different numbers of vertex and edge labeled
graphs. Vertex labels can be assigned to the non-isomorphic graphs in 6, 24, 6, 4, 12,
and 4 ways, and edge labels can be assigned to each vertex labeled graph with the same
complexity in 1, 3, and 6 ways in the order shown in Figure 2. Table 1 lists the number
of unlabeled graphs #(G|r), the number of vertex labeled graphs #(m|r), and the number
of fully labeled graphs #(g|r) for each complexity sequence r. Table 2 gives the numbers
#(m|G) and #(g|G) of vertex labeled and fully labeled graphs for each isomorphism class.

Table 1: Distributions on complexity for graphs with 4 vertices, 3 edges and no loops.

Complexity (5,0,0,1) (4,1,1,0) (3,3,0,0) Total
Unlabeled graphs 1 2 3 6

Vertex labeled graphs 6 30 20 56
Fully labeled graphs 6 90 120 216
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Table 2: Distributions on isomorphism for graphs with 4 vertices, 3 edges and no loops.

Isomorphism Total
Vertex labeled graphs 6 24 6 4 12 4 56
Fully labeled graphs 6 72 18 24 72 24 216

4 Numbers of Graphs

The number of multigraphs with n labeled vertices, m labeled edges and r available sites of
vertex pairs for the edges is given by the number of sequences g, which is denoted #(g) = r

m.
When edge labels are ignored, the number of graphs is given by the number of multiplicity
sequences m, which is the number of ordered partitions of m into r non-negative integers:

#(m) =

(

m+ r − 1

m

)

.

Each graph with only vertex labels can be edge labeled in the number of ways that g∗ can
be permuted, which is equal to

#(g|m) =

(

m

m

)

=
m!

∏

(i,j)∈R mij !
.

The total rm =
∑

m

(

m
m

)

is a sum over
(

m+r−1

m

)

terms.
Different fully labeled graphs are isomorphic if they are equal when vertex labels as well

as edge labels are ignored. The number of isomorphic fully labeled graphs is given by
(

m
m

)

multiplied by the number of isomorphic vertex labeled graphs with no edge labels. Formally,

#(g|G) =

(

m

m

)

#(m|G)

since
(

m
m

)

is invariant for graphs isomorphic to G.
Multiplicity sequences have the same complexity if they are permutations of the same

m∗. There are
(

r
r

)

such permutations where r ↔ m∗. Thus,

#(m|r) =

(

r

r

)

=
r!

∏m
k=0

rk!

is the number of graphs with vertex labels but no edge labels having complexity r. The
number of fully labeled graphs with complexity r is obtained by multiplying #(m|r) with
#(g|m):

#(g|r) =

(

m

m

)(

r

r

)

=
m! r!

∏m
k=0

k!rk rk!
.

5



The number of different complexity sequences r is the same as the number of unordered
partitions of m into r non-negative integers. This number is the sum of the numbers of
unordered partitions of m into k positive integers for k = 1, 2, . . . ,min(r,m). If amk denotes
the number of partitions of m into k positive integers and am = am1 + . . . + amm is the
number of partitions of m, it is possible to show that amk = am−k for k ≥ m/2. Tables of
am and amk for k < m/2 and m = 1, 2, . . . can be used to find

#(r) =























∑r
k=1

amk for r ≤ m
2

∑

k<m/2(ak + amk) for m
2
< r < m

am for r ≥ m .

Such tables are available, for instance, in Comtet (1974).

5 Complexity of Graphs

The complexity sequence r contains the distribution of multiplicities among the sites. Sum-
mary measures of this distribution is of interest as measures of complexity focusing on
special properties of the graph. For instance, the proportion of multiple sites

(r − r0 − r1)

r

or the average multiplicity among multiple sites

(m− r1)

r − r0 − r1

are simple measures of complexity focusing on any kind of deviation from graphs without
multiple edges. If loops are forbidden, this amounts to deviation from graph simplicity.

A measure that linearly combines the frequencies of different multiplicities is given by

m
∑

k=2

(

k

2

)

rk ,

which counts the number of pairs of edges associated with the same site. If loops are
forbidden, this measure is positive if and only if the graph is not simple. Another linear
measure with this property is

m
∑

k=0

rk log k! ,
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which is the logarithm of the common number of permutations that leave the edge sequence
g invariant for graphs of complexity r.

A special class of complexity measures focuses on how many graphs of different kinds
that have the same complexity r. Since these numbers can be very large, it is convenient to
consider logarithmic measures. For vertex labeled and fully labeled graphs with the same
complexity, the measures are

log#(m|r) = log r!− log r! = log r!−
m
∑

k=0

log rk!

and

log#(g|r) = logm! + log r!−
m
∑

k=0

(rk log k! + log rk!) .

These measures are similar to measures based on entropy, which characterizes flatness of
the relative frequency distributions m/m and r/r. Entropy can be considered as a measure
of the range or dimension of a latent flat distribution (see Section 7). The entropy of the
relative edge frequencies at different sites is given by

h(m/m) =
∑

(i,j)∈R

ϕ(mij/m)

where

ϕ(p) =

{

−p log p for p > 0
0 for p = 0 .

The entropy of the relative site frequencies for different multiplicities is given by

h(r/r) =
m
∑

k=0

ϕ(rk/r) .

It follows that the entropy of m/m is equal to

h(m/m) = logm−
1

m

m
∑

k=2

rkk log k .

This entropy is non-negative, zero only for all edges at the same site, and it attains a maximal
value of log r only if m is a multiple of r and the multiplicity distribution is uniform with
the same multiplicity m/r at all sites. For m < r, the maximum is logm and is attained
for all edges at different sites. For other cases with m > r the maximal value is somewhat
below log r and attained for an almost uniform distribution.
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It also follows that the entropy of r/r is equal to

h(r/r) = log r −
1

r

m
∑

k=0

rk log rk .

This entropy is non-negative, zero only for all multiplicities equal, and it attains a maximal
value of log(m+1) only in the degenerate case m = 1, r = 2. The maximal values for other
cases are lower but not easily found.

For large values of m, Stirling’s formula can be used to show that

h(m/m) =
1

m
log

(

m

m

)

+O

(

logm

m

)

≈
1

m
log#(g|m)

so that the entropy of m/m is approximately equal to the average number of bits (provided
logarithms to base 2 are used) per edge needed to generate all g corresponding to m.

6 Uniform Graph Models

The classical occupancy models with equal or unequal objects distributed among equal or
unequal sites can be modified to fit graph data with its special combinatorial structure for
the sites. We focus here on uniform distributions for different families of graphs. Families
of graphs are conveniently specified as random graphs. The uniform distributions might be
null models used to test or explore empirical graph families. The range of applications for
such null models is conveniently extended to families of subgraphs induced by vertices of
special kinds.

Assume that ξ is the edge sequence of a random graph that is uniform with probabilities

P (ξ = g) =
1

rm
for g ∈ R

m
.

In this case the probability distributions of the different functions m(ξ), G(ξ), and r(ξ)
are simply given as the relative frequencies of outcomes of ξ that are consistent with the
outcomes of the functions. Thus

P (m(ξ) = m) =

(

m
m

)

rm
,

P (G(ξ) = G) =
#(g|G)

rm
,

P (r(ξ) = r) =
m! r!

rm
∏m

k=0
k!rk rk!

.
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The entropy of a random variable is the same as the entropy of its probability distribution,
so

H(ξ) =
∑

g

ϕ(P (ξ = g)) = m log r .

Using calculation rules for entropy (given for instance in Frank, 2011a) it follows that

H(m(ξ)) = H(ξ)− E

[

log

(

m

m(ξ)

)]

,

H(G(ξ)) = H(ξ)− E [#(g|G(ξ))] ,

H(r(ξ)) = H(ξ)− E

[

log

(

m

m(ξ)

)]

− E

[

log

(

r

r(ξ)

)]

.

Using that mij(ξ) is binomially distributed with parameters m and 1/r, the entropy of the
multiplicity sequence can be expressed as

H(m(ξ)) = m log r − logm! + r

m
∑

k=2

(

m

k

)(

1

r

)k (

1−
1

r

)m−k

log k! .

The entropies of G(ξ) and r(ξ) can be numerically evaluated but seem to have no explicit
formulae.

Consider now an alternative model with edge sequence η assuming that m(η) is uniform
and that η conditional on m(η) is uniform. In this case

P (m(η) = m) =
1

(

m+r−1

m

) ,

P (r(η) = r) =

(

r
r

)

(

m+r−1

m

) ,

P (η = g) =
1

(

m
m(g)

)(

m+r−1

m

) ,

and

H(m(η)) = log

(

m+ r − 1

m

)

,

H(r(η)) =
1

(

m+r−1

m

)

∑

r

(

r

r

)

log

(

r

r

)

− log

(

m+ r − 1

m

)

,

H(η) =
1

(

m+r−1

m

)

∑

m

log

(

m

m

)

+ log

(

m+ r − 1

m

)

.
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The two uniform models considered are in physics referred to as the Maxwell-Boltzmann
model with uniform distribution of unequal particles in unequal cells, and the Bose-Einstein
model with uniform distribution of equal particles in unequal cells.

For the fully labeled graphs the entropy of ξ is maximal, and the entropy of η deviates
by

D1 = H(ξ)−H(η)

from it. For the vertex labeled graphs the entropy of m(η) is maximal and the entropy of
m(ξ) deviates by

D2 = H(m(η))−H(m(ξ))

from it. Therefore the reductions in entropy caused by omitting edge labels is larger for ξ
than for η,

H(ξ)−H(m(ξ)) ≥ H(η)−H(m(η)) ,

and the difference between the reductions is equal to the sum D1+D2 of the two deviations
from maximal entropy. This can also be expressed as the following ordering of the entropies

H(m(ξ)) ≤ H(m(η)) ≤ H(η) ≤ H(ξ) .

Some of the simplified complexity measures mentioned in Section 5 rely on the frequen-
cies of sites with no or single occupancy only. The distributions of r0(ξ) and r1(ξ) are
obtained as marginal distributions of r(ξ). For r0(ξ) the marginal probabilities are given
by

P (r0(ξ) = r0) =
r!

r0! rm

∑

Sm(r1, . . . , rm)

=
r! S(m, r − r0)

r0! rm
for r0 = 0, 1, . . . , r − 1 .

Here the sum extends over (r1, . . . , rm) satisfying
∑m

k=1
rk = r − r0 and

∑m
k=1

k rk = m.
The term

Sm(r1, . . . , rm) =
m!

∏m
k=1

k!rk rk!

counts the number of partitions of the edge set into r1 singletons, r2 parts of size 2, etc.
The sum is equal to S(m, r − r0), which is a Stirling number of the second kind for the
number of partitions of an m-set into r − r0 non-empty disjoint subsets.

For the bivariate distribution of (r0(ξ), r1(ξ)) the probabilities for r0 < r and r1 ≤

min(m, r − r0) are obtained as

P (r0(ξ) = r0, r1(ξ) = r1) =
r!

r0! r1! rm

∑

Sm(0, r2 . . . , rm) ,

where the sum extends over (r2, . . . , rm) satisfying
∑m

k=2
rk = r− r0 − r1 and

∑m
k=2

k rk =
m − r1. Thus, to evaluate the sum we need to specify the partitions of m − r1 into r

′ =
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r− r0− r1 integers larger than 2 and find the terms separately. The number of terms is the
same as the number of partitions of m′ = m− r1 − r

′ = m− r+ r0 into r
′ positive integers,

that is the number am′r′ given at the end of Section 4.
Upper and lower bounds to the bivariate probability can be found much easier, and they

are based on that

Sm(0, r2 . . . , rm) =
m! Sm′(r2 . . . , rm)

m′!
∏m

k=2
krk

,

where

m
′ =

m−1
∑

k=1

k rk+1 =
m
∑

k=2

(k − 1)rk = m− r + r0 .

Moreover, the geometric mean of the multiplicities is bounded between 2 and the arithmetic
mean, which implies that there are bounds α and β so that

α = 2r
′

≤

m
∏

k=2

k
rk ≤

[

(m′ + r
′)/r′

]r′
= β

for r′ > 0 and m
′
> 0. Therefore,

m! Sm′(r2, . . . , rm)

m′! β
≤ Sm(0, r2, . . . , rm) ≤

m! Sm′(r2, . . . , rm)

m′! α

and, consequently,

r! m! S(m′
, r

′)

r0! r1! m′! rm β
≤ P (r0(ξ) = r0, r1(ξ) = r1) ≤

r! m! S(m′
, r

′)

r0! r1! m′! rm α
,

where the lower bound to the probability is often quite accurate.
The probability that there are no multiple edges is given by

P (r1(ξ) = m) = P (r0(ξ) = r −m, r1(ξ) = m) =
m!

(

r
m

)

rm
for r ≥ m .

The distributions of r0(η) and r1(η) for the model with uniform vertex labeled graphs
are given by

P (r0(η) = r0) =

(

r
r0

)(

m−1

r−r0−1

)

(

m+r−1

m

) for r0 = 0, 1, . . . , r − 1

and

P (r0(η) = r0, r1(η) = r1) =

(

r
r0

)(

r−r0
r1

)(

m−r+r0−1

r−r0−r1−1

)

(

m+r−1

m

)

for r0 < r and r1 ≤ min(m, r − r0). The first case is proved by noticing that when the r0

empty sites have been chosen, the remaining r
′ = r− r0 sites should have at least one edge
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per site, and the remaining m
′ = m− r

′ edges can be distributed in any of
(

m′
+r′−1

m′

)

ways.
Similarly, in the second case, when the r0 empty sites and the r1 single occupancy sites have
been chosen, the remaining r

′ = r − r0 − r1 sites should have at least two edges per site,
and the remaining m

′ = m− r1 − 2r′ edges can be distributed in any of
(

m′
+r′−1

m′

)

ways.
In this model the probability that there are no multiple edges is given by

P (r1(η) = m) = P (r0(η) = r −m, r1(η) = m) =

(

r
m

)

(

m+r−1

m

) for r ≥ m .

Now
(

m+r−1

m

)

= r(r + 1) · · · (r + m − 1)/m! ≥ r
m
/m!, so obviously the graph property

of having no multiple edges has a smaller probability under the η-model than under the
ξ-model.

The entropy of (r0(η), r1(η)) is smaller than the entropy of the complete complexity
sequence r(η). The difference reveals how much information is lost by using the simpler
complexity measure. A simple illustration showing that simple complexity summaries can
be quite satisfactory is given in Table 3. We see that the outcomes of (r0, r1) match r quite
well, so that there is not much uncertainty about r when (r0, r1) is known. In fact, for
the ξ-model the entropies are H(r(ξ)) = 2.82 and H(r0(ξ), r1(ξ)) = 2.78 so only about one
percent of the information about complexity is lost by using the simpler complexity measure.
The univariate entropies H(r0(ξ)) = 1.95 and H(r1(ξ)) = 2.50 are also retaining almost
the same information as the bivariate entropy. For the η-model we find H(r(η)) = 3.63,
H(r0(η), r1(η)) = 3.38, H(r0(η)) = 2.11, and H(r1(η)) = 2.50 which implies that about
7% of the information about complexity is lost by the simpler measure.

Table 3: Number of outcomes of complexity r = (r0, r1, . . . , rm) for given numbers r0, r1 of
empty and single occupancy sites in graphs with 5 vertices, 8 edges and no loops.

r1

r0 0 1 2 3 4 5 6 7 8

2 1
3 1
4 1 1
5 1 1 1
6 1 1 2 1
7 2 2 1
8 3 1
9 1
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7 Entropy and Joint Information

Entropies are convenient measures of variation for general random variables. They are also
useful to determine dependence and other relationships between several random variables.
This can be intuitively understood by considering entropy as a measure of information, and
interpreting it as the number of informative binary dimensions in a bijective representation
of the outcomes. The technical interpretation of entropy as information refers to a property
of latent codes. It is known that repeated independent outcomes of a random variable with
N different possible outcomes and entropy H can be assigned binary sequences of different
lengths according to a prefix code that requires in the long run no more than H binary
digits (bits) per outcome. This corresponds to 2H latent code sequences with uniform
probabilities instead of N outcomes with arbitrary probabilities. The length of the latent
codes, the entropy H, is called the information in the outcomes, and any extra length in a
binary code for the outcomes, logN −H, is called the redundancy in the outcomes.

When two random variables ξ and η have common bits in their latent codes, they are
related, and this relationship is measured by the joint information or joint entropy

J(ξ, η) = H(ξ) +H(η)−H(ξ, η) .

Joint information is zero if and only if the variables are independent and thus do not reveal
any information about each other. Joint information is maximal when one of the variables
is completely determined by the other. Joint information is an alternative to correlation
and other measures that require numerical variables and specify linear or special non-linear
regression relationships. Arbitrary functional relationships as well as various conditional
dependence structures can be specified by different combinations of entropy measures. See
Frank (2011a) for further details about such possibilities.

The total information in (ξ, η) minus the information in η is the expected remaining
information in ξ when η is provided,

H(ξ, η)−H(η) = E[H(ξ|η)] ,

and the joint information is equal to the original information minus the remaining informa-
tion in any of the variables according to

J(ξ, η) = H(ξ)− E[H(ξ|η)] = H(η)− E[H(η|ξ)] .

If η is determined by ξ, the difference H(ξ)−H(η) is equal to the remaining information
in ξ when η is provided, or, in other words, the information in ξ that is lost if nothing more
than η is released.

Consider the edge sequence ξ of a random multigraph. The entropy of G(ξ) mea-
sures variation from uniformity or flatness in the probability distribution over the unlabeled
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graphs. The joint information of the multiplicity sequence m(ξ) and the complexity se-
quence r(ξ) is trivially equal to the entropy of r(ξ) because complexity is determined by
multiplicity. Less transparent relationships between network properties might be between
number of loops and number of multiple sites or any other network characteristics of spe-
cial interest for the applications. Joint entropies reveal such relationships. Sometimes it is
possible to give explicit expressions for the measures. Some examples are given in Section 9.

8 Some Further Illustrations

Numerical algorithms have been developed to handle distributions of edges among vertex
pairs for arbitrary values of m and n. Here these algorithms are used for the case with n = 6
and m = 4 in order to visualize how families of multigraphs are composed of isomorphisms
of varying complexity. We also illustrate the distributions on isomorphism and complexity
of fully labeled and vertex labeled graphs. We evaluate the possibilities to gain information
about them by using partial information.

Table 4 shows complexity distributions for uniform distributions over the fully labeled
graphs, over the vertex labeled graphs, and over the unlabeled graphs. Random variables
generating these graph families are the earlier defined edge sequences ξ and η. We also
consider an edge sequence ζ with uniform distribution of G(ζ) over the isomorphisms and
with ζ uniform conditional on G(ζ).

Table 4: Distributions on complexity for graphs with 6 vertices, 4 edges and no loops.

Complexity (14,0,0,0,1) (13,1,0,1,0) (13,0,2,0,0) (12,2,1,0,0) (11,4,0,0,0) Total

Unlabeled graphs 1 2 2 7 9 21
Vertex labeled graphs 15 210 105 1365 1365 3060
Fully labeled graphs 15 840 630 16380 32760 50625

The complexity distributions have entropies H(r(ξ)) = 1.11, H(r(η)) = 1.51 and
H(r(ζ)) = 1.91. Maximal entropy is here equal to log 5 = 2.32. Thus, the complexity
distributions have redundancies of 52%, 35%, and 18%, and all distributions exhibit a clear
concentration towards simplicity with no or few multiple edges.

From the distributions on isomorphisms in Figure 3 it follows that H(G(ξ)) = 3.87,
H(G(η)) = 3.95, and H(G(ζ)) = 4.39. The unlabeled graphs have maximal entropy log 21
= 4.39 obtained for the ζ-model. The vertex labeled graphs have maximal entropy for the η-
model, and 34% of that entropy is retained by G(η). The fully labeled graphs have maximal
entropy for the ξ-model, and 25% of that entropy is retained by G(ξ). A more complete
and systematic view of how the information content in different kinds of data varies for
the three models is given in Table 5. The models are constructed to have no redundancy
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for one of the data levels. All other redundancies are between 4% and 12%, except for the
complexity level which has higher redundancies. If maximal entropy is rounded upwards, a
rough common feature of the models is apparent. Of the 16 binary dimensions required for
fully labeled graphs, about 3 are informative about complexity, another 2 are informative
about how the sites need to be ordered to achieve graph structure, another 7 are informative
about vertex labeling, and another 4 about edge labeling.

Figure 3: Number of labeled and fully labeled graphs for different isomophisms and com-
plexities with 6 vertices, 4 edges and no loops.

Table 5: Entropy and maximal entropy of graph data under three uniform random models
for graphs with 6 vertices, 4 edges and no loops.

Entropy of data according to
Data ξ-model η-model ζ-model Maximal entropy

Fully labeled graph 15.63 15.45 14.67 15.63
Vertex labeled graph 11.44 11.58 11.07 11.58
Unlabeled graph 3.87 3.95 4.39 4.39
Graph Complexity 1.11 1.51 1.91 2.32

15



9 Other Graph Models

A natural generalization of the uniform model for the sequence ξ = (ξ1, . . . , ξm) of sites for
the edges is to assume that edges are independently assigned to sites according to a common
arbitrary probability distribution

p = (pij : (i, j) ∈ R)

over the possible sites of vertex pairs. Thus,

P (ξ = g) = pm(g) =
∏

(i,j)∈R

p
mij(g)

ij for g ∈ R
m

.

The multiplicity sequence m(ξ) is multinomially distributed with parameters m and p

so that

P (m(ξ) = m) =

(

m

m

)

pm

for the
(

m+r−1

m

)

different ordered partitions m of m into r non-negative integers. The
complexity sequence r(ξ) has probabilities given by

P (r(ξ) = r) =
∑

m|r

(

m

m

)

pm =
m!

∏m
k=0

k!rk

∑

m|r

pm

so, unless p is uniform, the sum needs a specification of all multiplicity sequences that have
complexity r. It is straightforward to find the entropies:

H(ξ) = −E

[

logpm(ξ)
]

= −mp logp = m

∑

(i,j)∈R

ϕ(pij) = m h(p)

and

H(m(ξ)) = −E

[

log

(

m

m(ξ)

)

pm(ξ)

]

= m h(p)− E

[

log

(

m

m(ξ)

)]

= m h(p)− logm! +
∑

(i,j)∈R

E [logmij(ξ)!]

= m h(p)− logm! +
∑

(i,j)∈R

m
∑

k=0

(

m

k

)

p
k
ij(1− pij)

m−k log k! .
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For m > r there has to be some multiplicity larger than 1, but for m ≤ r it might be of
interest to find the probability of no multiple edges. If loops are forbidden, this is the same
as the probability of graph simplicity. If loops are allowed, the number of loops

m1 =
n
∑

i=1

mii

and the number of sites r0 and r1 with no and single occupancy are statistics that suffice
to specify graph simplicity. For the ξ-model with common component distribution p, the
number of loops m1(ξ) is binomially distributed with parameters m and p1 =

∑n
i=1

pii. The
number rk(ξ) of sites with occupancy k has expected value

E [rk(ξ)] =
∑

(i,j)∈R

(

m

k

)

p
k
ij(1− pij)

m−k for k = 0, 1, . . . ,m .

This implies the following expected values for the simple complexity measures given by the
number of multiple occupancy sites and the number of multiple edges:

E [r − r0(ξ)− r1(ξ)] = r −
∑

(i,j)∈R

(1− pij)
m −m

∑

(i,j)∈R

pij(1− pij)
m−1

and

E [m− r1(ξ)] = m



1−
∑

(i,j)∈R

pij(1− pij)
m−1



 .

The probability that there are no multiple edges is given by the sum of all ordered different
products of m of the r probabilities in p, that is by

P (r1(ξ) = m) = m!
∑ ∏

(i,j)∈R

p
mij

ij

where the sum extends over all permutations of m∗ = (0r−m1m).
For many applications, an important generalization of independent assignments of edges

to vertex pairs is obtained by introducing stochastic processes that generate edge sequences.
A simple setup is to define r independent Poisson point processes that generate edges at
the different sites with intensities λij for (i, j) ∈ R. The sequence ξ = (ξ1, . . . , ξm) has
components ξk that record the sites in the order the edges occur during a fixed period of
time. Such an approach is to be discussed elsewhere.

An investigation of entropy measures for occupancy models similar to those considered
here is described in an article by Frank and Nowicki (1989). They introduce a graph on
objects corresponding to our edges with their edges specifying whether or not the objects
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occupy the same site. Thus, this graph has complete connected components and is closely
related to the concepts discussed here. They also develop asymptotic results for various
entropies. Of special interest is the asymptotic entropy for the multinomial distribution,
which implies that the multiplicities of the fully labeled graphs have an entropy H(m(ξ))
that for large m and r with r

2
/m tending to zero is given by

H(m(ξ)) =
1

2
log



(2πem)r−1
∏

(i,j)∈R

pij



+O

(

r
2

m

)

.

Complexity is a general property considered in many different contexts and used with or
without a specific definition. Complexity in graphs has been given different definitions in the
literature focusing on other graph properties than edge multiplicity. For instance, Karreman
(1955) and Mowshowitz (1968) are references that deal with completely different complexity
properties of graphs used as models for molecules with chemical bonds between atoms. A
common feature of many complexity concepts is that they seem to be well described and
analyzed by information measures based on entropy.
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Random Stub Matching Models of Multigraphs

Termeh Shafie

Abstract

This article studies the local and global structure of multigraphs under random stub
matching with fixed degrees (RSM). The local structure is analyzed by marginal distri-
butions of edge multiplicities, and the global structure is analyzed by the simultaneous
distribution of edge multiplicities. The simultaneous distribution is shown to depend on
a single complexity statistic. The distributions under RSM and IEA are used for calcu-
lations of moments and entropies, and for comparisons by information divergence. The
modified distributions are obtained by ignoring the dependencies between edges and as-
suming independent edge assignments to sites (IEA), and by ignoring the dependencies
between stubs and assuming independent stub assignments to vertices (ISA). The main
results in this article include a new formula for the probability of an arbitrary number
of loops at a vertex, and a more intricate expression for the probability of an arbitrary
number of edges at any site. Further, simplicity and complexity of multigraphs under
RSM are investigated and a new method of approximating the probability that an RSM
multigraph is simple is proposed and shown to perform well for multigraphs with small
numbers of vertices and edges.

Keywords: multigraph, edge multiplicity, entropy, information divergence, simplicity
and complexity.

1 Introduction

It is well known that different degree sequences are compatible with different numbers of
graphs. Several methods have been developed for generating random graphs with fixed or
modeled degrees, degree distributions or expected degrees. Such methods can be found
in Blitzstein and Diaconis (2011), Bayati, Kim and Saberi (2010), Britton, Deijfen and
Martin-Löf (2006), Chung and Lu (2002), and Bender and Canfield (1978). Random stub
matching, also referred to as the configuration model or the pairing model (e.g. Janson
2009, Bollobàs 1980), generates random multigraphs by randomly coupling pairs of stubs
to form edges.

Department of Statistics, Stockholm University, S-106 91 Stockholm, termeh.shafie@stat.su.se
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This article focuses on both the local and global structure of multigraphs under random
stub matching with fixed degrees (RSM). The local structure is analyzed by marginal dis-
tributions of edge multiplicities, and the global structure is analyzed by the simultaneous
distribution of edge multiplicities. The distributions under RSM as well as some modified
distributions with modeled degrees are used for calculations of moments and entropies, and
for comparisons by information divergences. These modified distributions are obtained by
ignoring the dependencies between edges when they are assigned to sites (IEA) and by
ignoring the dependencies between stubs when they are assigned to vertices (ISA).

In the next section, some basic concepts such as stubs, edges, sites, multigraphs, mul-
tiplicities and complexities are presented. The uniform random stub matching procedure
given fixed degrees is described in Section 3 where the distribution of multigraphs is deter-
mined and shown to depend on a single statistic which is a special summary measure of
complexity.

The moments of the edge multiplicity distributions under RSM are derived in Section
4. The moments of the number of loops at a fixed vertex are determined as functions of the
number of edges, denoted m, and the degree at that vertex. It is shown that the variance
of the number of loops under RSM is less than the variance under IEA, except for the
degenerate cases of degree value 1 or 2m. The moments of the number of edges between
two distinct vertices are determined as functions of the total number of edges m and the
degrees at the two vertices. It is shown that the variance of the number of such edges under
RSM is generally less than the variance under IEA, except for degrees that lie symmetrically
around the total number of edges and are given by m ± k for any non-negative integer k

less than a specified limit.
In Section 5, the distributions of edge multiplicities at local sites are investigated. The

probability of no loops at a vertex has been given in the literature (Janson 2009) but, as
far as we know, not generalized to arbitrary number of loops at a vertex. This formula
is derived using a special technique which also allows us to find the probability of edge
frequency between pairs of distinct vertices. This technique gives the trivariate distribution
of the numbers of loops and non-loops within and between two distinct vertices, and from
its marginals we obtain distributions of local edge multiplicities at any site. Although
somewhat combinatorically tedious, we also determine the range space of the trivariate
distribution.

Throughout Section 5, information divergence and entropies are used to compare the
edge multiplicity distributions under RSM and IEA. Numerical examples using the diver-
gence indicate that the distribution of loop multiplicity under RSM is closely related to
that of the IEA distribution at vertices with low degrees. The divergence increases mono-
tonically from zero to a maximal value and decreases very steeply back to zero. The results
also indicate that the discrepancy between the edge multiplicity distributions under RSM
and IEA is due to their different range spaces. Further, an illustration is given of how the
divergence between the probability distributions of local edge frequency under RSM and

2



IEA varies for different degrees. The results also show how the resemblance between the
distributions increases with increasing m.

The flatness of the local edge multiplicity distributions under RSM and IEA are com-
pared using entropies. Specifically, the entropy of the loop multiplicity distribution under
RSM is shown to be more symmetrical than that of IEA, and it has its maximum around
the stub proportion value 0.5. The corresponding loop multiplicity distribution under IEA
is skew to the right and has its maximum for a stub proportion value of about 0.7. Good
approximations to the entropies of loop multiplicities under both RSM and IEA are found.

Special attention is payed to the edge multiplicity distribution for the case with two
degrees that lie symmetrically around m. For this case the entropies are much higher for
IEA than for RSM. For both RSM and IEA, we give approximations to the entropies. These
approximations are very good for the IEA distributions but not for the RSM distributions.

In Section 6 the global structure is analyzed by the distribution of multigraphs under
RSM and IEA. Under RSM, this distribution was earlier shown to depend on a single
complexity statistic, and in order to find the entropy of this distribution, results about edge
multiplicities from Section 5 are used. The approximate entropies of the RSM and IEA
distribution of multigraphs are given using covariance matrices. For both RSM and IEA,
the exact and approximate entropies are close to the upper bounds of the exact entropies.
Using the information divergence, a large deviation between the multigraph distributions
under RSM and IEA are found and the results indicate flat distributions over very different
ranges. In particular for regular multigraphs, both the RSM and IEA distribution cluster
at the high probability sites when more edges are added and are therefore less flat for large
values of m.

In the final section, the simplicity and complexity of multigraphs under RSM are studied.
Two asymptotic results for the probability that an RSMmultigraph is simple are numerically
investigated, and it is shown that these probability approximations do not perform well
for multigraphs with small numbers of vertices and edges. Under certain conditions, an
alternative way of approximating the probability that an RSM multigraph is simple is
proposed. Numerical examples show that this approximation is good for small multigraphs.
Some other variables that identify simplicity and complexity are also considered, and the
moments of these variables are derived. It is shown that the moments of some of these
variables are much easier handled under IEA and a convenient way of obtaining the IEA
distribution is introduced. This is done by assuming that the stubs are randomly generated
and independently assigned to sites (ISA) and can be viewed as a Bayesian model for
the stub frequencies under RSM. Using this method, approximations to the entropy of the
distribution of multigraphs under RSM are derived. If the degree distributions are uniformly
or close to uniformly distributed, the approximations are good even for small multigraphs,
and for skew distributions they are good for multigraphs with many edges. An asymptotic
equipartition property is shown to give alternative approximations that work reasonably
well except for multigraphs with skew degree sequences and few vertices.
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2 Basic Concepts and Notation

A finite undirected graph g with n labeled vertices and m labeled edges associates with each
edge an ordered or unordered vertex pair. Let V = {1, . . . , n} and E = {1, . . . ,m} be the
sets of vertices and edges labeled by integers, and denote by R the set of available sites for
the edges. The site space for directed edges is V

2 and the site space for undirected edges
is R = {(i, j) ∈ V

2 : i ≤ j}. We consider (i, j) with i ≤ j as a canonical representation for
the unordered vertex pair. Let r =

(

n+1

2

)

be the number of sites in R.
The degree of vertex i, the number of edges incident to it, is denoted di and

∑n
i di = 2m.

The degree sequence d = (d1, . . . , dn) defines another sequence of 2m vertices or edge-stubs
corresponding to m edges without specifying the pairings of stubs to edges:

s = (1 . . . 1
︸ ︷︷ ︸

d1

2 . . . 2
︸ ︷︷ ︸

d2

· · · n . . . n
︸ ︷︷ ︸

dn

) .

Thus there is a bijection d ↔ s and we use the shorthand notation

s = (s1, . . . , s2m) = (1d12d2 · · ·ndn) ∈ V
2m

.

Let X(d) be the set of sequences x that are permutations of the stub sequence

X(d) = {x = (x1, . . . , x2m) ∈ V
2m : x ∼ s} ,

where ∼ means ”is a permutation of”. The number of permutations of a stub sequence s

obtained from the degree sequence d is given by

|X(d)|=

(

2m

d

)

=
(2m)!

d!
=

(2m)!
∏n

i=1
di!

,

and is also denoted #(x|s) or #(x|d).
Edges at the same site are called multiple edges, and the number of multiple edges at

site (i, j) is its multiplicity denoted mij . The multiplicity at site (i, j) ∈ V
2 in x is

mij(x) =

m
∑

k=1

I ((x2k−1, x2k) = (i, j)) .

It follows that
n
∑

i=1

n
∑

j=1

mij(x) = m··(x) = m

and
n
∑

j=1

(mij(x) +mji(x)) = mi·(x) +m·i(x) = di for i = 1, . . . , n .
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The number of loops and the number of non-loops are denoted

m1(x) =
n
∑

i=1

mii(x) and m2(x) =
∑∑

i 6=j

mij(x) .

When the edge multiplicities in x are arranged as a matrix we obtain the edge multiplicity
matrix

m(x) =
(

mij(x) : (i, j) ∈ V
2
)

with loop counts mii(x) in the main diagonal. If a matrix is created with these loop-
counts as the elements in the main diagonal and zeros outside, we obtain the loop frequency
matrix m1(x). The non-loop frequency matrix denoted m2(x) is then given as m2(x) =
m(x)−m1(x).

The representation of the edge sequence is modified in two different ways. The se-
quence y = (y1, . . . , y2m) is obtained from x by vertex shifts according to (y2k−1, y2k) =
(min(x2k−1, x2k),max(x2k−1, x2k)) for k = 1, . . . ,m. In other words, the injective map
x → y gives an ordered sequence of m edges from R and y is the edge sequence of an
undirected graph generated from x. The number of x that yield the same y is then given as
#(x|y) = 2m2(y). The sequence z = (z1, . . . , z2m) is obtained from y by ordering its edges
non-decreasingly, i.e. the injective map y → z gives an edge sequence canonically ordered
according to

(1, 1) < (1, 2) < · · · < (1, n) < (2, 2) < (2, 3) < · · · < (n, n)

so that
(z1, z2) ≤ (z3, z4) ≤ · · · ≤ (z2m−1, z2m) .

The edge sequence z represents the vertex labeled graph given by y without the edge
labels. The set of sequences z generated by x ∈ X(d) is denoted Z(d). The number of x
that yield the same vertex labeled graph z is #(x|z) =

∑

y|z#(x|y) =
∑

y|z 2
m2(y). Now

m2(y) = m2(z) and

#(y|z) =

(

m

m(z)

)

=
m!

∏

i≤j mij(z)!
,

so that

#(x|z) = 2m2(z)

(

m

m(z)

)

.

Here the edge multiplicity at site (i, j) ∈ V
2 in y and z is equal to the common value

mij(y) = mij(z) =











mij(x) for i = j

mij(x) +mji(x) for i < j

0 for i > j .
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The common edge multiplicity matrices of y and z are triangular with zeros below the main
diagonal. Moreover, the loop frequency matrices of x, y and z are all equal. The numbers
of loops and non-loops are therefore equal to

m1(z) =
n
∑

i=1

mii(z) =
n
∑

i=1

mii(x)

and
m2(z) =

∑∑

i<j

mij(z) =
∑∑

i 6=j

mij(x) .

The sum of the multiplicity matrix and its transpose is the same symmetric matrix for x,
y and z, i.e.

m(x) +m′(x) = m(y) +m′(y) = m(z) +m′(z) .

The row and column sums in this matrix are given by the degrees, and the loop counts are
doubled in the main diagonal.

Figure 1 shows a schematic view of bijections and other functional relationships between
the various concepts introduced here. The functional relationships comprise three different
edge sequences and their edge multiplicity matrices, the stub sequence, and the degree
sequence.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

x

m(x)

zy s

m(y)=m(z) d

Figure 1: Functional relationships between the edge sequences, multiplicity matrices, stub
sequence and degree sequence.

3 Uniform Stub Matching with Fixed Degrees

We focus on uniform distributions for different families of graphs which we refer to as
random graphs. Assume that ξ is a random permutation of the stub sequence s defined by
the degree sequence d, i.e. ξ is uniform on X(d) = {x : x ∼ s} ⊆ V

2m with probabilities

P (ξ = x) =
1
(

2m
d

) for x ∈ X(d) .
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Let η be the edge sequence of the undirected graph obtained by shifts in ξ. Further let ζ
be the canonical edge sequence of the undirected graph generated by ξ with probabilities

P (ζ = z) =
∑

x|z

P (ξ = x) =
2m2(z)

(

m
m(z)

)

(

2m
d

) =
2m2(z)m! d!

m(z)! (2m)!

=
2m2(z)m!

∏n
i=1

di!

(2m)!
∏

i≤j mij(z)!
for z ∈ Z(d) .

Consider the ordered partition m(z) and the corresponding unordered partition of m
into r non-negative integers. There is a bijection between this partition and the sequence of
frequencies of sites with multiplicities 0, 1, . . . ,m given by r(z) = (r0(z), . . . , rm(z)) where

rk(z) =
∑∑

i≤j

I(mij(z) = k) for k = 0, 1, . . . ,m .

The distribution of multiplicities that is given by r(z) is called the complexity of the graph
with edge sequence z (Frank and Shafie, 2012). It is convenient to separate frequencies of
loops and non-loops and use r(z) = r1(z) + r2(z) where

r1(z) = (r10(z), . . . , r1m(z)) and r2(z) = (r20(z), . . . , r2m(z))

with

r1k(z) =

n
∑

i=1

I(mii(z) = k) and r2k(z) =
∑∑

i<j

I(mij(z) = k) for k = 0, 1, . . . ,m .

Using these complexities it is possible to express the probability P (ζ = z) as a function
of a special summary measure of complexity according to the following:

P (ζ = z) = C2−t(z)
,

where C = 2mm!d! /(2m)! and

t(z) = m1(z) + logm(z)!

=
n
∑

i=1

mii(z) +
∑∑

i≤j

logmij(z)!

=
m
∑

k=1

k r1k(z) +
m
∑

k=2

rk(z) log k!

=
m
∑

k=1

(k + log k! )r1k(z) +
m
∑

k=2

r2k(z) log k! .
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Simple graphs without loops and multiple edges have t(z) = 0 and all simple graphs have
the same probability C. More complex graphs have higher values of t(z) and smaller prob-
abilities. All graphs with a fixed value t(z) = t of the complexity measure have the same
probability. The set Z(d) of edge sequences is partitioned according to values of the com-
plexity measure, and the set of edge sequences with complexity t is denoted

Z(d, t) = {z ∈ Z(d) : t(z) = t} .

The number of sequences in this set is denoted |Z(d, t)|= K(d, t), or simply Kt if d is clear
from context. The probability of complexity value t is given by

P (t(ζ) = t) =
∑

z|t(z)=t

P (ζ = z) = CKt2
−t

,

and the conditional distribution of ζ given complexity t is equal to

P (ζ = z|t(ζ) = t) =
C2−t

CKt2−t
=

1

Kt

which is uniform on Kt outcomes in Z(d, t). Neither Kt nor the probability P (t(ζ) = t)
are monotone as functions of t. This will follow by an examination of Kt in a numerical
example considered below.

Example.

Consider undirected graphs with degree sequence d = (3, 3, 2, 2, 2, 2). There are in total 784
possible vertex labeled graphs with edge sequences z in Z(d). Table 1 lists the probability
P (t(ζ) = t), the number of vertex labeled graphsKt, and the probability per graph P (t(ζ) =
t)/Kt for each complexity value 2t. As seen, neither Kt nor the probability P (t(ζ) = t) are
monotone as functions of t. It is also clear that every simple graph has a higher probability
of occurring than any complex graph, and that the more complex a graph is, the smaller
probability it has. Note however that this does not mean that all unlabeled graphs of
given complexity have the same probability of occurring. This is clarified by looking at all
unlabeled simple graphs in this example. In Table 2 the number of isomophic graphs (the
number of vertex labeled graphs) are listed for the four possible unlabeled simple graphs.
We see in Table 2 that the third unlabeled graph has more edge sequences generating it
than the others, and therefore it has the highest probability of occurring.
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Table 1: Complexity distribution of graphs with degree sequence (3, 3, 2, 2, 2, 2).

Complexity Probability of complexity Number of graphs Probability per graph
(2t)

1 0.230170 54 0.004262
2 0.387880 182 0.002131
4 0.252522 237 0.001065
6 0.002131 3 0.000710
8 0.098035 184 0.000533
12 0.001421 4 0.000355
16 0.024242 91 0.000266
24 0.000535 3 0.000178
32 0.002398 18 0.000133
48 0.000533 6 0.000089
64 0.000067 1 0.000067
96 0.000044 1 0.000044

Table 2: Simple graphs with degree sequence (3, 3, 2, 2, 2, 2).

Unlabeled graphs Total

Vertex labeled graphs 12 6 24 12 54

4 Moments of Edge Multiplicities

In order to investigate the distribution of the edge multiplicites under random stub matching
(RSM), we start by analyzing the moments of this distribution. The probability of coupling
stubs to edges in ξ is

Pij = P ((ξ2k−1, ξ2k) = (i, j)) =







(

di
2

)

/

(

2m
2

)

for i = j

didj/2m(2m− 1) for i 6= j ,
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where
∑n

i=1

∑n
j=1

Pij = 1. The probability of undirected edges in η is thus equal to

Qij = P ((η2k−1, η2k) = (i, j)) =























Pii =
(

di
2

)

/

(

2m
2

)

for i = j

2Pij = didj/
(

2m
2

)

for i < j

0 for i > j .

Note that (η2k−1, η2k) are identically but not independently distributed. It is convenient to
introduce Qijkℓ = P ((η2u−1, η2u) = (i, j) and (η2v−1, η2v) = (k, ℓ)) for u 6= v. For i ≤ j and
k ≤ ℓ we have that Qijkℓ = Qkℓij .

The expected values and variances of the numbers of loops and non-loops in η (or in the
canonical edge sequence ζ) under RSM are derived by using the first and second moments
of the edge multiplicities, which occasionally is shortly denoted mij when randomness is
clear, i.e.

mij = mij(η) = mij(ζ) =
m
∑

k=1

Iijk,

where the indicators are given by

Iijk = I ((η2k−1, η2k) = (i, j)) =

{

1 if (η2k−1, η2k) = (i, j)
0 otherwise ,

for (i, j) ∈ R and k ∈ E. Now E(Iijk) = Qij so that

E(mij) = mQij =







(

di
2

)

/(2m− 1) for i = j

didj/(2m− 1) for i < j ,

In order to obtain the variance ofmij under RSM, we need the covariance between indicators
Iijk and Iijℓ. They are given by

Cov(Iijk, Iijℓ) =







Qij(1−Qij) for k = ℓ

Qijij −Q
2

ij for k 6= ℓ ,

where

Qijij =







(

di
2

)(

di−2

2

)

/

(

2m
2

)(

2m−2

2

)

for i = j

didj(di − 1)(dj − 1)/
(

2m
2

)(

2m−2

2

)

for i < j .
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Hence

Var(mij) =
m
∑

k=1

m
∑

ℓ=1

Cov(Iijk, Iijℓ)

= mQij(1−Qij) +m(m− 1)(Qijij −Q
2

ij)

= mQij(1−mQij) +m(m− 1)Qijij

=



















(di
2
)

2m−1

(

1−
(di
2
)

2m−1

)

+
6(di

4
)

(2m−1)(2m−3)
for i = j

didj
(2m−1)

(

1−
didj
2m−1

)

+
didj(di−1)(dj−1)

(2m−1)(2m−3)
for i < j .

Covariances between mij and mkℓ require covariances between indicators Iiju and Ikℓv for
u = 1, . . . ,m and v = 1, . . . ,m. Here i ≤ j and k ≤ ℓ and, since Cov(mij ,mkℓ) =
Cov(mkℓ,mij), it is sufficient to consider i ≤ k, and for i = k, only j ≤ ℓ. Explicit
expressions for such covariances will be given when needed in the sequel.

The variance of mij under RSM can be written as

Var(mij) = σ
2

ij +∆ij for i ≤ j .

Here, σ2

ij = mQij(1−Qij) is the variance of a binomial distribution obtained by independent
edge assignments (IEA) with parameters m and Qij for i ≤ j and

∆ij = m(m− 1)(Qijij −Q
2

ij) .

Using these expressions we can now show for which values of di and dj the variance of the
IEA distribution is smaller or larger than the variance of the RSM distribution of edge
multiplicity. We start with the case when i = j and search the sign of ∆ii for values of
di = d where 2 ≤ d ≤ 2m− 1. By rewriting ∆ii as

∆ii = m(m− 1)Qii

[

(d− 2)(d− 3)

(2m− 2)(2m− 3)
−

d(d− 1)

2m(2m− 1)

]

,

and noticing that
d− k

2m− k
= 1−

2m− d

2m− k

is a decreasing function of k, it follows that ∆ii < 0 for d < 2m. Thus, Var(mii) < σ
2

ii

for 1 < d < 2m and Var(mii) = σ
2

ii only for the degenerate cases d = 1 and d = 2m with
σ
2

ii = 0.
When i < j, set a = min(di, dj) and b = max(di, dj) and search the sign of ∆ij for

different pairs of values (a, b) with 1 ≤ a ≤ b and a+ b ≤ 2m for m > 1. By rewriting ∆ij

as

∆ij = m(m− 1)Qij

[

(a− 1)(b− 1)
(

2m−2

2

) −
ab
(

2m
2

)

]

,
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we see that ∆ij has the same sign as the function

f(a, b) =
(a− 1)(b− 1)

ab
−

(

2m−2

2

)

(

2m
2

) =

(

1−
1

a

)(

1−
1

b

)

−

(

1−
1

m

)

(

1−
1

m− 1

2

)

.

Now f(a, b) < 0 for 1 ≤ a ≤ b ≤ m−1, and f(1, b) < 0 for 1 ≤ b ≤ 2m−1. For fixed value a
or fixed value b, f(a, b) is increasing in the other variable. Moreover, f(m,m) > 0. In order
to find the critical curve between positive and negative values of f(a, b), we set f(a, b) = 0
and solve for b to get

b =
a− 1

aθ − 1
,

where θ = (4m− 3)/m(2m− 1) and between 0 and 1. The intersection between this curve
and the upper boundary b = 2m−a of the (a, b)-region defined by 1 ≤ a ≤ b and a+b ≤ 2m
is obtained as the solution to the quadratic equation

a
2 − 2ma+

2m− 1

θ
= 0

with roots

a = m±

√

m(m− 1)

4m− 3
.

The relevant root is m−
√

m(m− 1)/(4m− 3) since a = min(di, dj) cannot be larger than
m. It follows that

f(a, 2m− a) < 0 for 1 ≤ a < m−

√

m(m− 1)

4m− 3
,

f(a, 2m− a) > 0 for m−

√

m(m− 1)

4m− 3
< a ≤ m ,

and

f(a, 2m− a) = 0 if a = m−

√

m(m− 1)

4m− 3
is integer.

With a similar investigation of the line b = 2m − 1 − a and the critical curve, we find no
intersection and therefore f(a, b) < 0 for 1 ≤ a ≤ b ≤ 2m− 1− a. The conclusion is that

∆ij > 0 only for m−

√

m(m− 1)

4m− 3
< a = 2m− b ≤ m ,

that is for the
⌈

√

m(m− 1)/(4m− 3)
⌉

integer points (a, 2m− a) with

m−

√

m(m− 1)

4m− 3
< a ≤ m
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on the upper boundary. Moreover, ∆ij < 0 for the other m
2 −

⌈

√

m(m− 1)/(4m− 3)
⌉

points (a, b) in the (a, b)-region. Thus the RSM distribution of mij has a variance that is
smaller than σ

2

ij unless di and dj lie symmetrically around m and are given by m ± k for
some non-negative integer

k <

√

m(m− 1)

4m− 3
.

It also follows that the variance is maximal for k = 0 and decreases for increasing k. The
case m = 20 is illustrated in Figure 2 where the points with positive ∆ij are marked with
(∗).

0 10 20

0

10

20

30

40

a = min(di, dj)

b
=

m
ax

(d
i,
d j
)

∆ij > 0

Figure 2: Points and critical curve. Points represent posssible degree pairs (a, b) at a given
vertex pair in a graph with m = 20 edges. A critical curve is separating points with positive
and negative variance difference ∆ij between the edge multiplicity distributions obtained at
(a, b) by random stub matching and by independent edge assignments. The points where
the stub matching has larger variance are marked by (∗).
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5 Distributions of Edge Multiplicities

In this section, some new results on distributions of edge multiplicities for graphs obtained
by random stub matching (RSM) are derived. There are many asymptotic results in the
literature (e.g. Bollobàs 2001) but we are also interested in exact results for fixed degree
sequences. Specific results for no loops and no multiple edges have been discussed in Janson
(2009) and Bollobàs (1980), where random stub matching is referred to as the configuration
model or the pairing model.

The probability of no loops at vertex i, denoted P0, is given by Janson (2009) as

P0 =

di
∏

j=1

2m− di − j + 1

2m− 2j + 1
.

He gives no formula for arbitrary numbers of loops at i but notes that it is more difficult to
find the probability of no multiple edges due to the complications caused by loops. We now
derive a formula for an arbitrary number of loops at vertex i under RSM and get in particular
a simple expression for the number of no loops at i. This technique can be generalized and
used to derive the probability of arbitrary multiplicities at any site (i, j) ∈ R.

Consider the probability of v loops at vertex i under RSM denoted by Pv = P (mii(η) =
v) = P (mii = v) for v = 0, . . . ,m. To find how many of the

(

2m
d

)

possible stub sequences
that generate v loops at i, arrange m edges with v loops at i, di − 2v edges with the
remaining i-stubs, and m − di + v other edges. This number of arrangements is given by
the multinomial coefficient

(

m
v, di−2v

)

. The single i-stubs have two alternative locations in

the di − 2v edges. Finally, the remaining stubs are arranged in
(

2m−di
d∗

)

ways where d∗ is
the degree sequence d without di. This leads to

Pv =

(

m
v, di−2v

)

2di−2v
(

2m−di
d∗

)

(

2m
d

)

which simplifies to

Pv =

(

m
v, di−2v

)

2di−2v

(

2m
di

) .

In particular the probability of no loops at vertex i under RSM is equal to

P0 =

(

m
di

)

2di
(

2m
di

) .

This formula can be developed according to the following which shows that it is equivalent
to Janson’s (2009) expression for P0 as a ratio between a falling factorial from 2m− di and

14



a falling semifactorial from 2m − 1, both carried out for di factors (in fact, di − 1 factors
suffice since the last one cancels):

P0 =
m! di! (2m− di)! 2di

di! (m− di)! (2m)!

=
m! 2m (2m− di)!

(2m)! (m− di)! 2m−di

=
(2m)! ! (2m− di)!

(2m)! (2m− 2di)! !

=
(2m− 2di − 1)! ! (2m− di)!

(2m− 1)! ! (2m− 2di)!

=
(2m− di)(2m− di − 1) · · · (2m− 2di + 1)

(2m− 1)(2m− 3) · · · (2m− 2di + 1)
.

Assume that di = d with 2 ≤ d ≤ 2m and consider the general probability that there
are v loops at vertex i under RSM given by

P (mii = v) =

(

m
v, d−2v

)

2d−2v

(

2m
d

) for v = 0, 1, . . . , ⌊d/2⌋ .

This probability is also denoted Pv or Pv(m, d). Set P = (P0, . . . , P⌊d/2⌋). The expected
value and variance of mii under RSM given in the previous section are equal to µii and
σ
2

ii + ∆ii, where µii =
(

d
2

)

/(2m − 1) and σ
2

ii = mQii(1 − Qii) = µii

(

1− µii

m

)

are the mean
and variance of the IEA distribution B = (B0, . . . , Bm) with parameters m and Qii. The
range of the multiplicity distribution under IEA is v = 0, 1, . . . ,m and the range of the
multiplicity distribution under RSM is smaller. Its proportion is (⌊d/2⌋+1)/(m+1) of the
range of the IEA distribution. Table 3 gives these distributions for the case m = 10 and
d = 10. Also presented in Table 3 is a measure of the discrepancy between the distributions
given by the information divergence

D(P,B) =
∑

v:Pv>0

Pv log
Pv

Bv
.

The log-likelihood ratios can be of any sign but their weighted sum, the divergence D(P,B),
is non-negative and zero only when there is no discrepancy between the two distributions
(see e.g. Frank 2011). Figure 3 shows how divergence varies for different values of d =
2, . . . , 2m−1 for m = 40, and how the divergence varies for different stub proportions d/2m
(or range proportions (⌊d/2⌋+ 1)/(m+ 1) ) for some values of m.
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Table 3: The probability distribution of loop multiplicity at a vertex of degree d = 10 when
m = 10 edges are formed by random stub matching (RSM). It is compared by information
divergence to a binomial distribution obtained by m = 10 independent edge assignments
(IEA).

Number of Probability Probability Weighted
loops under RSM under IEA log-likelihood ratio

0 0.005542 0.067011 -0.019930
1 0.124705 0.207964 -0.092044
2 0.436468 0.290433 0.256636
3 0.363723 0.240358 0.217242
4 0.068198 0.130539 -0.063849
5 0.001364 0.048615 -0.007164
6 0 0.012573 0
7 0 0.002230 0
8 0 0.000259 0
9 0 0.000018 0
10 0 0.000001 0

Divergence = 0.290891
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Figure 3: Information divergence between random stub matching and independent edge
assignments for the distributions of loop multiplicity at a vertex of degree d in a graph with
m edges. Information divergence is plotted against degree d for m = 40 and against stub
proportion d/2m for m = 20, 40, 60.
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In order to compare the two distributions we also use the entropy which characterize
flatness of the distributions P and B. The entropies are equal to

h(P) =
∑

v:Pv>0

−Pv logPv

and
h(B) =

∑

v:Bv>0

−Bv logBv .

Upper bounds to the entropies are given by their logarithmic ranges:

h(P) ≤ log (⌊d/2⌋+ 1)

and
h(B) ≤ log(m+ 1) .

For the case where m = 10 and d = 10 we have that h(P) = 1.746 and h(B) = 2.443.
Figure 4 shows how entropies vary for different stub proportions d/2m for m = 20, 40, 60.
We see that stub matching has lower entropy and is more symmetric around 0.5 than the
entropy corresponding to independent edge assignments. The latter entropy is skew to the
right and has its maximum when loop probability

(

d
2

)

/

(

2m
2

)

is about 1/2 which occurs for

the stub proportion close to 1/
√
2 ≈ 0.7.

The asymptotic entropies (Frank and Nowicki 1989) of the loop multiplicity distribution
under RSM and under IEA are obtained by normal approximations given by

h(P) ≈
1

2
log
[

2πe(σ2

ii +∆ii)
]

,

and

h(B) ≈
1

2
log
[

2πeσ2

ii

]

.

For the case where m = 10 and d = 10, these approximations are equal to h(P) ≈ 1.747
and h(B) ≈ 2.474. Figure 5 shows how these entropy approximations (dotted lines) vary
for the same cases as in Figure 4, i.e. for different stub proportions d/2m for m = 20, 40, 60.
We see that the approximations are close to their true values for all cases shown.
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Figure 4: Entropy of the distribution of loop multiplicity under random stub matching
(solid lines) and independent edge assignments (dashed lines) at a vertex of degree d in a
graph with m edges. Entropy is plotted against stub proportion d/2m for m = 20, 40, 60.
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Figure 5: Entropy of the distribution of loop multiplicity under random stub matching
(solid lines) and independent edge assignments (dashed lines) at a vertex of degree d in a
graph with m edges. The entropy approximations are illustrated with dotted lines for all
cases. Entropy is plotted against stub proportion d/2m for m = 20, 40, 60.
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We now turn to edge multiplicitiesmij = mij(η) for i < j under RSM, and start with the
joint probability distribution of the multiplicities (mii,mjj ,mij) = (mii(η),mjj(η),mij(η))
which is denoted Puvw = P ((mii,mjj ,mij)) = (u, v, w)). Applying a similar argument
as before for i-loops, j-loops, (i, j)-edges, remaining i-stubs and j-stubs, we obtain after
simplification the following formula for the trivariate probabilities under RSM:

Puvw =

(

m
u, v, w, di−2u−w, dj−2v−w

)

2di+dj−2u−2v−w

(

2m
di, dj

) .

To specify possible outcomes of (u, v, w) let a and b denote the smallest and largest number
of stubs at vertices i and j, and c denote the number of stubs at other vertices, i.e. c =
2m−a−b. Table 4 gives the number of stubs of each category occurring at the edges within
and between categories. There are u loops with 2u stubs at the vertex with a stubs, v loops
with 2v stubs at the vertex with b stubs, and w edges with w stubs of each kind between
these two vertices. There are a−2u−w and b−2v−w remaining stubs at these two vertices,
and they combine to edges with the same number of other stubs. Since there is a total of c
other stubs, there remain c−(a−2u−w)−(b−2v−w) = 2(m−a−b+u+v+w) other stubs
giving room for m−a−b+u+v+w other loops or edges. Note that 2u+w ≤ a, 2v+w ≤ b

and (2u+ w) + (2v + w) ≥ a+ b− c are required to achieve non-negative frequencies.

Table 4: Number of stubs of each vertex category at edges or loops within and between
categories.

Vertex i Vertex j Other vertices Total

Vertex i 2u w a− 2u− w a

Vertex j w 2v b− 2v − w b

Other vertices a− 2u− w b− 2v − w 2(m− a− b+ u+ v + w) c

Total a b c 2m

The set of possible outcomes (u, v, w) is illustrated in Figure 6 and correspond to marked
points in the shaded regions with possible stub frequencies (2u + w, 2v + w) of the same
parity. Four different cases are numerically illustrated in Figure 6 where (a, b) = (3, 7) and
the value of c is varied and given by the vertical distance from a + b to the upper point
of the digonal. First, consider b ≤ a + b − c ≤ a + b which corresponds to 0 ≤ c ≤ a and
choose c = 2. There are four possible points in the triangular region, namely (1, 7), (2, 6),
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(3, 5), (3, 7) corresponding to (u, v, w) equal to (0, 3, 1), (1, 3, 0), (0, 2, 2), (1, 2, 1), (0, 1, 3),
(1, 3, 1), (0, 2, 3). These (u, v, w) are obtained by choosing w = 0, 2, . . . or w = 1, 3, . . . so
that 2u and 2v get even. It can be shown that the possible point (2u + w, 2v + w) in the
shaded region corresponds to

1 +

⌊

min(2u+ w, 2v + w)

2

⌋

possible outcomes (u, v, w). Second, consider the case where a ≤ a + b − c ≤ b which
corresponds to a ≤ c ≤ b and choose c = 6. Third, consider 0 ≤ a + b − c ≤ a which
corresponds to a ≤ b ≤ c ≤ a+ b and choose c = 8, and finally fourth, consider a+ b− c ≤ 0
which corresponds to a + b ≤ 0 and choose c = 12 to illustrate the case with maximal
number of outcomes.
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Figure 6: The possible outcomes of (u, v, w) in Table 4 correspond to the shaded region
with stub frequencies (2u+w, 2v+w) of the same parity. The four cases illustrate how the
region varies when the number of other stubs c is smaller than a, between a and b, between
b and a+ b, and larger than a+ b.
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Letting u ≤ ⌊(a− w)/2⌋ = αw, v ≤ ⌊(b− w)/2⌋ = βw, and u+ v ≥ a+ b−m−w = γw,
the total number of possible outcomes of (u, v, w) denoted K is given by

K =

a
∑

w=0

Kw ,

where

Kw =























(

αw+βw−γw+2

2

)

if γw ≥ βw

(αw + 1)(βw − γw) +
(

αw+2

2

)

if αw ≤ γw ≤ βw

(αw + 1)(βw + 1)−
(

γw+1

2

)

if γw ≤ αw ,

providing an upper bound to the entropy. Table 5 gives a numerical example of this result
for the second case in Figure 6, i.e. when a = 3, b = 7 and c = 6. The twelve points in
Figure 6 for this case can be individually checked for possible (u, v, w). There are six points
with two outcomes and six points with one outcome of (u, v, w), thus a total of 18 outcomes.
Using the formula for Kw we also find that the total number of possible outcomes here is
given by

K =
3
∑

w=0

Kw = 18 ,

implying that the entropy of this distribution is

h(P) =
∑

uvw:Puvw>0

−Puvw logPuvw ≤ log(18) = 4.170 ,

where P = (Puvw : all possible (u, v, w)). The exact entropy in this case turns out to be
3.525. Further comparisons are presented in Table 6.

Table 5: The total number of possible outcomes of (u, v, w) in Table 4 when a = 3, b = 7
and c = 6, where u ≤ αw, v ≤ βw, and u+ v ≥ γw .

w αw βw γw Kw

0 1 3 2 5
1 1 3 1 7
2 0 2 0 3
3 0 2 -1 3

K = 18
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If the edges are assumed to be independently assigned to sites, the IEA distribution for
(mii,mjj ,mij) is multinomial distribution with parameters m and [Qii Qjj Qij (1 −Qii −

Qjj −Qij)] where Qij for i ≤ j is defined as earlier. This distribution is shortly denoted B

with probabilities Buvw for
(

m+3

3

)

different outcomes (u, v, w,m−u−v−w) that are ordered
partitions of m into four non-negative integers. Thus, the entropy of this distribution is

h(B) =
∑

uvw:Buvw>0

−Buvw logBuvw ≤ log

(

m+ 3

3

)

and using the normal approximation to the multinomial distribution we obtain the approx-
imate entropy

h(B) ≈
1

2
log
[

(2πe)3 det(ΣIEA)
]

,

where ΣIEA is the covariance matrix of (mii,mjj ,mij) under IEA given by

ΣIEA = m





Qii(1−Qii) −QiiQjj −QiiQij

−QjjQii Qjj(1−Qjj) −QjjQij

−QijQii −QijQjj Qij(1−Qij)



 .

The determinant of ΣIEA is given by

det(ΣIEA) = m
3
QiiQjjQij [(1−Qii)(1−Qjj)(1−Qij)− 2QiiQjjQij

− (1−Qii)QjjQij − (1−Qjj)QiiQij − (1−Qij)QiiQjj ]

= m
3
QiiQjjQij(1−Qii −Qjj −Qij) ,

so that

h(B) ≈
1

2
log
[

(2πem)3QiiQjjQij(1−Qii −Qjj −Qij)
]

.

The approximate entropy of the distribution of (mii,mjj ,mij) under RSM is

h(P) ≈
1

2
log
[

(2πe)3 det(ΣRSM)
]

,

where det(ΣRSM) is the determinant of the covariance matrix. The covariance matrix of
(mii,mjj ,mij) under RSM is given by

ΣRSM = ΣIEA +∆ ,

where

∆ = m(m− 1)





Qiiii −Q
2

ii Qiijj −QiiQjj Qiiij −QiiQij

Qiijj −QiiQjj Qjjjj −Q
2

jj Qijjj −QijQjj

Qiiij −QiiQij Qijjj −QijQjj Qijij −Q
2

ij



 ,
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with

Qiiii =

(

di
2

)(

di−2

2

)

(

2m
2

)(

2m−2

2

) , Qiijj =

(

di
2

)(dj
2

)

(

2m
2

)(

2m−2

2

) ,

Qiiij =

(

di
2

)

(di − 2)dj
(

2m
2

)(

2m−2

2

) , Qijij =
di(di − 1)dj(dj − 1)

(

2m
2

)(

2m−2

2

) ,

and note that Qijkℓ = Qkℓij for all i ≤ j and k ≤ ℓ.
Table 6 illustrates the different entropies presented here for some cases with a = 3, b = 7

and where the total edge frequency m is varied, including the four cases given in Figure
6. Also presented in this table is the information divergence between the RSM and IEA
distribution of (mii,mjj ,mij) :

D(P,B) =
∑

uvw:Puvw>0

Puvw log
Puvw

Buvw
.

We see in Table 6 that the approximate entropies are close to the entropies of both the IEA
and RSM distributions indicating that both distributions are fairly well approximated by
the normal distribution. We also note that as m increases, the RSM entropy moves towards
that of the IEA. This can also be seen by the divergence values which are decreasing towards
zero for increasing m. The common limiting distributions of RSM and IEA is a one-point
distribution at (u, v, w) = (0, 0, 0) so the exact entropies tend to zero. The upper bounds
for the RSM distributions tend to log(22) since there are 22 points (u, v, w) corresponding
to the last case shown in Figure 6. This limit is achieved already for m = 10.

The distribution of a single non-loop multiplicity mij = mij(η) for i < j under RSM
is given as a marginal in the trivariate distribution of (mii,mjj ,mij). It is obtained by
summing over the numbers of loops at vertices i and j. Thus,

P (mij = w) = P··w =

⌊a−w
2
⌋

∑

u=0

⌊ b−w
2
⌋

∑

v=0

Puvw , for w = 0, 1, . . . , a ,

where a = min(di, dj) ≥ 1 and b = max(di, dj) with a+b ≤ 2m. Note that not all Puvw > 0.
For the special case when n = 2, a + b = 2m and u + v + w = m, we get a = 2u − w and
b = 2v − w and the marginal distribution of m12 simplifies to

P (m12 = w) = Pw =

(

m
u, v, w

)

2w
(

2m
a

) =
m! 2w a! (2m− a)!

(2m)! (a−w
2

)! ( b−w
2

)! w!
,

where w = 0, 2, . . . , a if a and b are even, and w = 1, 3, . . . , a if a and b are odd. For this
case we cannot expect the binomial distribution under IEA to be an adequate approxima-
tion. Obviously the IEA distribution B = (Bw : w = 0, 1, . . . ,m) with parameters m and
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Table 6: Entropy of the joint edge multiplicity distribution under random stub matching
(RSM), independent edge assignments (IEA) and the entropy approximations for these
distributions where number of stubs are a = 3, b = 7 and the total edge frequency is
m = 6, 8, 9, 11, 20, 30, 40, 50, 60, thus including the four cases shown in Figure 6. Also given
is the divergence between these two distributions.

Entropy RSM Entropy IEA
Upper Upper

m bound Exact Approximate bound Exact Approximate Divergence

6 2.81 2.36 2.31 6.39 5.07 5.31 1.88
8 4.17 3.53 3.61 7.37 4.87 5.13 0.76
9 4.39 3.64 3.70 7.78 4.68 4.94 0.55
11 4.46 3.61 3.65 8.51 4.30 4.58 0.34
20 4.46 2.96 2.90 10.79 3.17 3.36 0.10
30 4.46 2.40 2.19 12.41 2.50 2.48 0.04
40 4.46 2.03 1.65 13.59 2.08 1.86 0.02
50 4.46 1.77 1.21 14.52 1.80 1.38 0.02
60 4.46 1.57 0.84 15.28 1.59 0.10 0.01

ab/

(

2m
2

)

= a(2m − a)/m(2m − 1) gives positive probabilities to all outcomes whereas the
RSM distribution of edge multiplicity, P = (Pw : w = 0, 1, . . . ,m), has zero probabilities for
all even or all odd outcomes. According to the results in Section 4, it is only for this special
case, n = 2, that the RSM distribution can have a variance σ2

ij +∆ij that is larger than the

variance σ2

ij of the IEA distribution. This occurs when a and b lie at the same distance from

m, and this distance is strictly less than
√

m(m− 1)/(4m− 3). Thus ∆ij > 0 for only one
choice (a, 2m− a) = (m,m) if m < 5, two choices (m,m) and (m− 1,m+1) if 5 ≤ m < 17,
three choices if 17 ≤ m < 37, four choices if 37 ≤ m < 65, five choices if 65 ≤ m < 101,

and so forth. Of the m cases of (a, 2m − a) only
⌈

√

m(m− 1)/(4m− 3)
⌉

have a variance

larger than σ
2

ij , so even if the number of cases increases with increasing m, the proportion
of cases decreases towards zero. This is illustrated in Figure 7, where we also notice that
the proportion is not monotonically decreasing.

Table 7 gives the RSM distribution of edge multiplicity and the corresponding IEA
distribution for the case m = 10 and (a, 2m − a) = (10, 10). Also presented in Table 7 is
the information divergence between these distributions. The entropies for this example are
equal to h(P) = 1.746 and h(B) = 2.704. The asymptotic entropies for the edge multiplicity
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Figure 7: Proportion of the degree pairs (a, 2m− a) for a = 1, . . . ,m with edge multiplicity
variance larger for random stub matching than for independent edge assignments. The
proportions are plotted against edge frequency m.

distributions under RSM and IEA give the following approximations:

h(P) ≈
1

2
log
[

2πe(σ2

ij +∆ij)
]

and

h(B) ≈
1

2
log
[

2πeσ2

ij

]

.

For the case where m = 10 and (a, 2m − a) = (10, 10), these approximations are equal to
h(P) ≈ 2.747 and h(B) ≈ 2.706.

Figure 8 shows divergence for mij at degree pairs (a, 2m − a) for different a when
m = 10, and how it varies for different proportions a/m for some selected values of m.
Figure 9 highlights how h(P) and h(B) vary for different a when m and Figure 10 compares
the entropy approximations to their true values. The deviation between entropy values in
Figure 10 indicates that edge multiplicity under RSM is poorly approximated by a normal
distribution. However, the approximate entropies are close to the true values under IEA.
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Table 7: The probability distribution of edge multiplicity at a pair of vertices with degree
pair (a, 2m − a) = (10, 10) when m = 10 edges are formed by random stub matching
(RSM). It is compared by information divergence to the binomial distribution obtained by
independent edge assignments (IEA).

Number of Probability Probability Weighted
edges under RSM under IEA log-likelihood ratio

0 0.001364 0.000569 0.001721
1 0 0.006319 0
2 0.068198 0.031595 0.075702
3 0 0.093614 0
4 0.363723 0.182028 0.363242
5 0 0.242704 0
6 0.436468 0.224726 0.418008
7 0 0.142683 0
8 0.1247050 0.059451 0.133277
9 0 0.014679 0
10 0.0055424 0.001631 0.009781

Divergence = 1.001733
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Figure 8: Information divergence between random stub matching and independent edge
assignments for the distributions of edge multiplicity at a pair of vertices with degree pair
(a, 2m − a) in a graph with m edges. Information divergence is plotted against different
degrees a for m = 10 and against different proportions a/m for m = 10, 20, 30, 40.
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Figure 9: Entropy of the distribution of edge multiplicity under random stub matching
(solid lines) and independent edge assignments (dashed lines) at a pair of vertices with
degree pair (a, 2m − a) in a graph with m edges. Entropy is plotted against different
degrees a for m = 10, 20, 30, 40.
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Figure 10: Entropy of the distribution of edge multiplicity under random stub matching
(solid lines) and independent edge assignments (dashed lines) at a pair of vertices with degree
pair (a, 2m− a) in a graph with m edges. The entropy approximations are illustrated with
dotted lines for all cases. Entropy is plotted against different degrees a form = 10, 20, 30, 40.
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This section is concluded with an illustration of how the divergence between the prob-
ability distributions of edge frequency mij for i < j under RSM and under IEA vary for
different numbers of stubs at vertex i and vertex j, i.e. for different ordered degree pairs
(a, b) with 1 ≤ a ≤ b and a+ b ≤ 2m where m is the total edge frequency. The case m = 15
is illustrated in Figure 11 where divergence D(P,B) is plotted against degree pairs (a, b)
using a color coding of standardized divergence values applied to the unit squares located
around points (a, b). The divergences for all possible degree pairs (a, b) are calculated and
their maxima are determined. Standardized divergence values are obtained by dividing
with the maxima. Every 10th percentile of this standardized distribution is then calculated
and assigned a color where darker colors represent higher divergences, i.e. darker colors
are assigned to unit squares where the RSM distribution deviates the most from the IEA
distribution. Letting c = 2m − a − b denote the number of stubs at other vertices than
i and j, border lines are drawn in Figure 11 where c is equal to the stub frequencies a

and b. These two border lines b = 2m − 2a and b = m − a/2, together with the border
lines b = 2m − a and b = a, divide the figure in three regions corresponding to whether c

is smaller than, or larger than, or between the two stub frequencies a and b. The upper
region in Figure 11 represents cases where c ≤ a ≤ b. Here, we have the majority of the high
divergence values implying that the RSM distribution and the IEA distribution deviates the
most. The middle region in Figure 11 represents cases where a ≤ c ≤ b. Here, the majority
of the region has a brighter color implying less deviation between the RSM distribution and
the IEA distribution. The same applies for the lower region in Figure 11 which represents
cases where a ≤ b ≤ c. Here, even less deviation is seen between the two distributions.
Thus we can conclude that the more stubs we have at other vertices than i and j, the more
resemblance we have between the distributions of mij under RSM and IEA.
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Figure 11: Divergence between the multiplicity distribution under random stub matching
and under independent edge assignments for edges between two vertices with ordered degree
pair (a, b) when total edge frequency is m = 15 and total number of stubs is 2m = a+ b+ c.
A darker color at the unit squares located around points (a, b) represent a larger divergence
than a brighter color.
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6 Distributions of Multigraphs

So far we have been considering the local structure of multigraphs by examining the dis-
tribution of edge multiplicities mij(η) for i ≤ j. We now turn to the global structure by
studying the distribution of multigraphs, i.e. the distribution of m(η). Entropy measures
are used to compare the distributions of multigraphs under RSM and under IEA.

In Section 3, the probability of generating undirected multigraphs under RSM was shown
to be given by

P (m(η) = m) = Pm(d) =
2m2

(

m
m

)

(

2m
d

) .

This probability depends on a single statistic, the complexity measure t(η) = m1(η) +
logm(η)!, and can be written as

Pm(d) = C2−t
,

where t = m1 + logm! is the outcome of t(η) and C = 2mm!d! /(2m)! is a constant.
Letting P = (Pm(d) : all different m) denote the probability distribution of multigraphs
under RSM, its entropy H(m(η)) = h(P) is given by

h(P) =
∑

m:Pm>0

−Pm logPm

= E(t(η))− logC ,

where the expected value of t(η) is

E(t(η)) = E(m1) + E(logm! ) .

The first term of the above sum is the expected number of loops m1 = m1(η) under RSM
which by using the results in Section 4 is obtained as

E(m1) =
n
∑

i=1

E(mii) = m

n
∑

i=1

Qii =
1

2m− 1

n
∑

i=1

(

di

2

)

.

The second term of the expression for the expected value of t(η) can be expanded to

E(logm! ) =

m
∑

k=2

log k!
∑∑

i≤j

P (mij = k) ,

where the probabilities need to be considered for vertex pairs with different degree pairs.
Letting P (mii = k) = Pk(m, a) for di = a, P (mij = k) = Pk(m, a, b) for a = min(di, dj) and
b = max(di, dj),

∑n
i=1

I(di = a) = na,
∑n

i=1
I(di = b) = nb and

∑∑

i<j

I (min(di, dj) = a,max(di, dj) = b) =

{

nanb for a < b
(

na

2

)

for a = b ,
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we have that

∑∑

i≤j

P (mij = k) =
∑

a

naPk(m, a) +
∑

a

(

na

2

)

Pk(m, a, a) +
∑∑

a<b

nanbPk(m, a, b) .

These expansions yield the formula for the exact entropy. In particular, for regular graphs
with the same degree d = 2m/n at each vertex, the expected number of loops under RSM
is given by

E(m1) =
n

(2m− 1)

(

d

2

)

=
nd(d− 1)

2(nd− 1)
,

and the exact entropy is simplified to

h(P) =
nd(d− 1)

2(nd− 1)
+

m
∑

k=2

log k!

[

nPk(m, d) +

(

n

2

)

Pk(m, d, d)

]

− logC ,

where

C =
(d! )n

(nd− 1)! !
.

The approximate entropy of the distribution of multigraphs under RSM is given by

h(P) ≈
1

2
log
[

(2πe)r−n det(ΣRSM)
]

,

where ΣRSM is the covariance matrix of r−n non-redundant components of the multiplicity
sequencem. In order to findΣRSM, considerQijkℓ for all i ≤ j and k ≤ ℓ whereQijkℓ = Qkℓij .
More specifically, we need the formulae for two loops that are at the same vertex or at
different vertices, one loop and one non-loop with one or no common vertex, and two non-
loops with two, one or no vertices in common. With a slight abuse of notation, the r by r

covariance matrix under RSM can be written as

ΣRSM = ΣIEA +∆ ,

where ΣIEA is the r by r covariance matrix under independent edge assignments, i.e. the
covariance matrix of a multinomial distribution with parameters m and Q. The elements
of ΣIEA are mQij(δijkℓ−Qkℓ) for r different (i, j) and (k, ℓ) in R, where δijkℓ is equal to 1 if
(i, j) = (k, ℓ) and 0 otherwise. The matrix ∆ consists of elements ∆ijkℓ = m(m−1)(Qijkℓ−
QijQkℓ) for r different (i, j) and (k, ℓ) in site space R. Renaming the ordered edge sequence

indexes (1, 1) < (1, 2) < · · · < (1, n) < (2, 2) < (2, 3) < · · · < (n, n) to 1, 2, . . . , r =
(

n+1

2

)

,
ΣRSM can be written as

ΣRSM = m











Q1(1−Q1) −Q1Q2 · · · −Q1Qr

−Q1Q2 Q2(1−Q2) · · · −Q2Qr

...
...

. . .
...

−Q1Qr −Q2Qr · · · Qr(1−Qr)











+m(m−1)











∆11 ∆12 · · · ∆1r

∆12 ∆22 · · · ∆2r

...
...

. . .
...

∆1r ∆2r · · · ∆rr











.
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In order to avoid singularity of ΣRSM, remove n of the r components in m that are linear
combinations of the others, implying that the degrees of freedom here is equal to r − n =
(

n
2

)

. A similar argument was used in Section 5 for the trivariate distribution of the edge
multiplicities (mii,mjj ,mij) obtained when three of the six pairs of vertex categories were
redundant.

We now turn to the distribution of multigraphs under IEA which corresponds to that
edges in ξ are independently assigned to sites according to the probability distribution
(Pij : (i, j) ∈ V

2), and edges in η are independently assigned to sites according to the
probability distribution Q = (Qij : (i, j) ∈ R), where Pij and Qij are defined as earlier.
Thus,

P (η = y) =
m
∏

k=1

Q(y2k−1, y2k) =
∏

i≤j

Q
mij(y)
ij ,

where Q(i, j) = Qij , and m(η) is multinomially distributed with parameters m and Q so
that

P (m(η) = m) =

(

m

m

)

Qm =
m!

∏

i≤j mij !

∏

i≤j

Q
mij

ij ,

which is shortly denoted Bm(d). Note that this implies thatmij(η) is binomially distributed
with parameters m and Qij , as considered in previous sections. Letting B = (Bm(d) :
all different m) denote the probability distribution of multigraphs under IEA, the entropy
of this distribution is equal to

h(B) =
∑

m:Bm>0

−Bm logBm .

The number of multigraphs m is not restricted by d in the same way as for the RSM
distribution. Here it is given by the total number of ordered partitions of m into r =

(

n+1

2

)

available sites of vertex pairs for the edges:

#m =

(

m+ r − 1

m

)

.

This gives an upper bound to the entropy

h(B) ≤ log

(

m+ r − 1

m

)

.

The approximate entropy under IEA is given by

h(B) ≈
1

2
log
[

(2πe)r−1 det(ΣIEA)
]

,
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where ΣIEA now denotes the (r − 1) by (r − 1) covariance matrix of m when one of the r

components is omitted (to avoid singularity). The determinant of this matrix can be proved
to be equal to

m
r−1
∏

i≤j

Qij ,

where the product is over all r pairs (i, j) ∈ R. Thus, the approximate entropy under IEA
is obtained by

h(B) ≈
1

2
log



(2πem)r−1
∏

i≤j

Qij



 .

In Table 8 we consider the entropies of the distributions of multigraphs under RSM and
IEA and the entropy approximations for these distributions with n = 6 vertices, m = 9
edges and different degree sequences with minimum degree 2. Also shown in Table 8 is
the divergence between these two distributions. The total number of graphs under IEA for
this example is 10,015,005 and we do not calculate the exact entropies which here are close
to their approximations. We see that the approximate entropies under RSM and under
IEA are both close to their upper bounds. The exact entropies under RSM are close to
the approximate entropies implying that the distributions of multigraphs are fairly well
approximated by normal distributions. However, the divergence values indicate a large
deviation between the distributions under RSM and IEA. These findings indicate rather
flat distributions over very different ranges for RSM and IEA. We note that there are cases
in Table 8 when the approximate entropies are larger than the upper bounds to the exact
entropies. This occurs for the last three rows of Table 8. It would be a tedious task to
investigate this in general by using the formula given in Section 5 for the total number of
multigraphs under RSM. We therefore restrict ourselves to a general investigation of IEA
by considering the following inequality which holds when the IEA entropy approximation
is at most equal to the upper bound to the exact entropy:

(2πem)
r−1

2





∏

i≤j

Qij





1

2

≤

(

m+ r − 1

m

)

.

The right hand side can be written as

(

m+ r − 1

m

)

=

r−1
∏

k=1

(

1 +
m

k

)

,

and the inequality can be expressed as giving an upper bound to the geometric mean of the
edge probabilities according to

Q̃ ≤

(

G

2πe

)
r−1

r

,
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Table 8: Entropies of the distributions of multigraphs under random stub matching (RSM),
independent edge assignments (IEA) and the entropy approximations for these distributions
with n = 6 vertices, m = 9 edges and different degree sequences with minimum degree 2.
Also given is the divergence between these two distributions.

Entropy RSM Entropy IEA
Degree Number Upper Exact Approx Upper Approx
sequence of graphs bound bound Divergence

d = (8, 2, 2, 2, 2, 2) 773 9.59 8.63 7.61 23.26 18.84 8.72
d = (7, 3, 2, 2, 2, 2) 1210 10.24 9.47 8.98 23.26 20.41 8.90
d = (6, 4, 2, 2, 2, 2) 1651 10.69 9.97 9.62 23.26 21.15 8.99
d = (5, 5, 2, 2, 2, 2) 1804 10.82 10.14 9.82 23.26 21.37 9.02
d = (6, 3, 3, 2, 2, 2) 1914 10.90 10.23 10.25 23.26 21.86 9.07
d = (5, 4, 3, 2, 2, 2) 2424 11.24 10.60 10.77 23.26 22.45 9.14
d = (4, 4, 4, 2, 2, 2) 2814 11.46 10.81 11.08 23.26 22.82 9.18
d = (5, 3, 3, 3, 2, 2) 2857 11.48 10.87 11.40 23.26 23.17 9.21
d = (4, 4, 3, 3, 2, 2) 3316 11.70 11.08 11.72 23.26 23.53 9.26
d = (4, 3, 3, 3, 3, 2) 3943 11.95 11.36 12.35 23.26 23.27 9.33
d = (3, 3, 3, 3, 3, 3) 4720 12.21 11.64 12.98 23.26 24.97 9.41

where

Q̃ =





∏

i≤j

Qij





1

r

and G =

[

r−1
∏

k=1

(

1
√
m

+

√
m

k

)2
]

1

r−1

.

Under IEA, we have that

∏

i≤j

Qij =
d1(d1 − 1) d2(d2 − 1) · · · dn(dn − 1) 2d1d2 2d1d3 · · · 2dn−1dn

[2m(2m− 1)]r

=
2(

n
2
) (d1 − 1) (d2 − 1) · · · (dn − 1) (d1 d2 · · · dn)

n

[2m(2m− 1)]r
,

and the geometric mean is

Q̃ =





∏

i≤j

Qij





1

r

=

[

2(
n
2
)∏n

i=1
(di − 1) (

∏n
i=1

di)
n

[2m(2m− 1)]r

]
1

r

.

A comparison between the distributions P and B for regular graphs with n = 4 vertices
of the same degree d is shown in Figure 12 when d varies from 2 to 10 so that the number of
edges m = nd/2 = 2d varies from 4 to 20. There is one case where the approximate entropy
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under IEA is larger than the upper bound to the exact entropy under IEA. This occurs for
m = 6 and d = (3 3 3 3). We investigate this by using the above shown inequality. For this
case we have that r = 10 and the geometric mean of the edge probabilities is

Q̃ =

[

2(
n
2
)(d− 1)n (d)n

2

[2m(2m− 1)]r

]
1

r

=

[

2624316

[12(11)]10

]

1

10

= 0.088 .

Further, we have that

G =

[

r−1
∏

k=1

(

1
√
m

+

√
m

k

)2
]

1

r−1

=





9
∏

k=1

(

1
√
6
+

√
6

k

)

2




1

9

= 1.107 ,

so that the right hand side of the inequality is equal to

(

G

2πe

)
r−1

r

=

(

1.107

2πe

)
9

10

= 0.085 .

As seen, the geometric mean of the edge probabilities is greater than the upper bound
which implies that the inequality is not satisifed, i.e. the IEA entropy approximation for
this example is greater than the upper bound to the exact entropy.

Further in Figure 12, we note that as the number of edges increases, the differences
between the upper bounds of the entropies and the exact or approximate entropies are
increased. This indicates that the distributions of multigraphs under RSM and IEA cluster
at the high probability sites when more edges are added and therefore are less flat for large
values of m.

7 Simplicity and Complexity

The probability distribution of complexity of multigraphs generated by RSM depends in a
complicated way on its degree sequence. Different aspects of complexity can be studied by
various indicators and summary measures. For instance, the expected value of a simplicity
indicator is the probability that the multigraph is simple, and it has received much attention
in the literature. Janson (2009), McKay (1985), McKay and Wormald (1991), Bollobàs
(1980), and Bender and Canfield (1978) all focus on asymptotic results and so far no exact
solution seems to have been found. Other examples of useful information about complexity
are given by the expected numbers of loops and multiple edges and their variances. This
section reviews some results from the literature and presents some convenient summary
measures of complexity.
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Figure 12: Approximate and exact entropies of the distribution of multigraphs under ran-
dom stub matching (RSM), approximate entropies under independent edge assignments
(IEA) and upper bounds of entropies in different regular multigraphs with n = 4 vertices.
Entropies are plotted against number of edges m between 4 and 20.

There is a considerable literature about graphical degree sequences, i.e. such degree
sequences that can be realized by simple graphs. Obvious necessary conditions for a finite
sequence of non-negative integers (d1, . . . , dn) to be graphical is that di < n,

∑n
i=1

di = 2m is
even and m ≤

(

n
2

)

. Erdös and Gallai (1960) give further necessary and sufficient conditions
for the existence of a simple graph with given degree sequence. They show that a degree
sequence d of non-negative integers in non-increasing order d1 ≥ · · · ≥ dn is graphical if
and only if

j
∑

i=1

di ≤ j(j − 1) +
n
∑

i=j+1

min(j, di), for 1 ≤ j ≤ n− 1 .

Proof of necessity is straightforward; the left side of the inequality counts degree among the
j vertices with highest degrees. The first term on the right side is a consequence of that at
most (j − 1) edges are incident to any of the first j vertices. The second term of the right
side is a sum of upper bounds to the number of edges for each remaining vertex. The proof
of sufficiency is more complicated but can be found in several papers including Tripathi,
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Venugopalan and West (2009), Sierksma and Hoogeveen (1991) and Choudum (1986).
Besides the existence result above, a recursive test to find graphical degree sequences is

given by Havel (1955) and Hakimi (1962). To avoid isolated vertices only sequences with
strictly positive degrees are considered in their result. They show that a non-increasing
sequence d1 ≥ · · · ≥ dn ≥ 1 with n ≥ 2 is graphical if and only if the sequence

d∗ = (d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn)

is graphical. The proof, which can be adapted into an algorithm to determine whether or
not a sequence of positive integers can be realized by a simple graph, can be found in several
papers including Blitzstein and Diaconis (2011) and Tripathi and Tyagi (2008).

The asymptotic results given by Janson (2009) concern the probability that an RSM
multigraph is simple, which we denote P0. The asymptotic probabilities given by Janson
(2009) are based on the assumptions that degrees and numbers of vertices and edges depend
on some parameter that tends to infinity. The main result is that as m → ∞:

(i) lim inf P0 > 0 if and only if
∑

d
2

i = O(m) ,

(ii) P0 → 0 if and only if

∑

d
2

i

m
→ ∞ ,

with the corollary that as n → ∞ where m = O(n) and n = O(m):

(i) lim inf P0 > 0 if and only if
∑

d
2

i = O(n) ,

(ii) P0 → 0 if and only if

∑

d
2

i

n
→ ∞ .

The two asymptotic formulas for the probability that a multigraph is simple are given by
Janson (2009) and they can in our notations be given as

P
′

0
= exp



−

n
∑

i=1

n
∑

j=1

λij +
∑∑

1≤i<j≤n

log(1 + λij)



+ o(1) ,

and, assuming that maxi(di) = o(
√
m),

P
′′

0
= exp [−Λ(1 + Λ)] + o(1) ,

where

λij =
1

m

√

(

di

2

)(

dj

2

)
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and

Λ =
1

2

n
∑

i=1

λii =
1

2m

n
∑

i=1

(

di

2

)

=
1

4m

n
∑

i=1

d
2

i −
1

2
.

Hence

P
′

0
= exp



−
1

2m

(

n
∑

i=1

√

(

di

2

)

)2

+
∑∑

1≤i<j≤n

log

(

1 +
1

m

√

(

di

2

)(

dj

2

)

)



+ o(1) ,

and

P
′′

0
= exp



−
1

4

(

1

2m

n
∑

i=1

d
2

i

)

2

+
1

4



+ o(1) .

In particular, for regular graphs with the same degree d at every vertex, λij = (d − 1)/n
and Λ = (d− 1)/2 so that

P
′

0
= exp

[

−
n(d− 1)

2
+

(

n

2

)

log

(

1 +
(d− 1)

n

)]

+ o(1)

when nd → ∞ and n → ∞, and

P
′′

0
= exp

[

−
(d− 1)(d+ 1)

4

]

+ o(1)

when d/n → 0 and n → ∞. Some numerical examples for these approximations are pre-
sented later in this section.

Using the results obtained in Section 4 for edge multiplicities under RSM, we derive
expected values and variances of some quantities that can be used to study simplicity and
complexity of multigraphs. The expected values of the numbers of loops m1 = m1(η)
(already mentioned in previous section) and non-loops m2 = m2(η) under RSM are directly
obtained as expected values of local multiplicities according to:

E(m1) = m

n
∑

i=1

Qii =
1

2m− 1

n
∑

i=1

(

di

2

)

and

E(m2) = m

∑∑

i<j

Qij =
1

2m− 1

∑∑

i<j

didj .

We also obtain E(m2) = m − E(m1) by using the linear relationship m2 = m −m1. This
linear relationship also implies that

Var(m2) = Var(m1) .
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This common variance is given by

Var(m1) =
n
∑

i=1

n
∑

j=1

Cov(mii,mjj) =
n
∑

i=1

n
∑

j=1

m
∑

k=1

m
∑

ℓ=1

Cov(Iiik, Ijjℓ) ,

where Cov(Iiik, Ijjℓ) need to be considered for different i, j, k and ℓ. For k = ℓ

Cov(Iiik, Ijjk) =

{

Qii(1−Qii) for i = j

−QiiQjj for i 6= j ,

and for k 6= ℓ

Cov(Iiik, Ijjℓ) =

{

Qiiii −Q
2

ii for i = j

Qiijj −QiiQjj for i 6= j ,

where

Qiiii =

(

di
2

)(

di−2

2

)

(

2m
2

)(

2m−2

2

) and Qiijj =

(

di
2

)(dj
2

)

(

2m
2

)(

2m−2

2

) .

This implies that

Var(m1) = m





n
∑

i=1

Qii(1−Qii)−
∑∑

i 6=j

QiiQjj





+m(m− 1)





n
∑

i=1

(Qiiii −Q
2

ii) +
∑∑

i 6=j

(Qiijj −QiiQjj)





= m

n
∑

i=1

Qii +m(m− 1)
n
∑

i=1

Qiiii −m
2

n
∑

i=1

Q
2

ii

+m(m− 1)
∑∑

i 6=j

Qiijj −m
2
∑∑

i 6=j

QiiQjj

= m

n
∑

i=1

Qii(1−m

n
∑

i=1

Qii) +m(m− 1)





n
∑

i=1

Qiiii +
∑∑

i 6=j

Qiijj





=
1

2m− 1

n
∑

i=1

(

di

2

)



1−
1

2m− 1

n
∑

j=1

(

dj

2

)





+
1

(2m− 1)(2m− 3)





n
∑

i=1

(

di

2

)(

di − 2

2

)

+
∑∑

i 6=j

(

di

2

)(

dj

2

)



 .
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In particular, for regular graphs with the same degree d at every vertex we obtain

E(m1) =
d− 1

2

(

1 +
1

nd− 1

)

and

Var(m1) =
d− 1

2

(

1 +
1

nd− 1
+

(d− 2)(d− 3)

2nd

)

+O

(

1

n2

)

.

Hence we expect that there are slightly more than (d−1)/2 loops, and the expected number
of loops is about the same for any number of vertices. The variance indicates that the
number of loops might be approximately Poisson distributed.

A variable that has been used by several authors to study simplicity is m1 +m3 where
m3 is the number of pairs of equal non-loops in η. This number is formally given by

m3 =
∑∑

i<j

(

mij

2

)

=
∑∑

i<j

∑∑

k<ℓ

IijkIijℓ .

The sum m1 +m3 is a variable that is 0 if and only if the multigraph is simple. Now

E(m3) =
m(m− 1)

2

∑∑

i<j

Qijij =
2

(2m− 1)(2m− 3)

∑∑

i<j

(

di

2

)(

dj

2

)

,

and the expected value of m1 +m3 is thus given by

E(m1 +m3) = m

n
∑

i=1

Qii +

(

m

2

)

∑∑

i<j

Qijij

=
1

2m− 1

n
∑

i=1

(

di

2

)

+
2

(2m− 1)(2m− 3)

∑∑

i<j

(

di

2

)(

dj

2

)

.

In particular, for regular graphs with the same degree d at every vertex this expected value
is about E(m1 +m3) = (d2 − 1)/4 regardless of the number of vertices.

In order to make it easier to investigate simplicity and complexity, and find the expected
value of the number rk = rk(η) of sites with occupancy k, we use the IEA multiplicity
distribution introduced in the previous section so that m(η) is multinomially distributed
with parameters m and Q. From this it follows that mij(η) is binomially distributed with
parameters m and Qij and

E(rk) =
∑∑

i≤j

(

m

k

)

Q
k
ij(1−Qij)

m−k for k = 0, 1, . . . ,m .
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Using this result, we obtain a formula for the expected value of the statistic t = t(η), which
in Section 3 was shown to determine the probability distribution of multigraphs under
RSM. This statistic is a summary measure of complexity that is equal to 0 if and only if
the multigraph is simple. Its expected value under IEA is given by

E(t) = E

[

m1 +
m
∑

k=2

rk log k!

]

= m

n
∑

i=1

Qii +
m
∑

k=2



log k!

(

m

k

)

∑∑

i≤j

Q
k
ij(1−Qij)

m−k



 .

Note that the expected value of t under RSM that was given in the previous section is
considerably more complicated to specify and analyze.

Other statistics related to complexity are also easily handled under IEA. The number
of sites with no occupancy given by r0 = r0(η) has expected value

E(r0) =
∑∑

i≤j

(1−Qij)
m

,

and the number of sites with single occupancy given by r1 = r1(η) has expected value

E(r1) = m

∑∑

i≤j

Qij(1−Qij)
m−1

.

The expected value of the number of multiple occupancy sites is thus

E(r − r0 − r1) = r −
∑∑

i≤j

(1−Qij)
m −m

∑∑

i≤j

Qij(1−Qij)
m−1

,

and the number of multiple edges has expected value

E(m− r1) = m



1−
∑∑

i≤j

Qij(1−Qij)
m−1



 .

A particulary interesting statistic is r21 (defined in Section 3) which is equal to m if and only
if the multigraph is simple. This means that there are m single occupancies of non-loops.
The exact probability distribution of this statistic is unknown, but being a counting statistic
it is not unreasonable to assume that it is approximately Poisson distributed with parameter
λ = E(r21). The probability of simplicity P0 = P (r21 = m) can then be approximated by

P
′′′

0
=

e
−λ

λ
m

m!
,
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where

λ = E(r21) = m

∑∑

i≤j

Qij(1−Qij)
m−1 = m

∑∑

i<j

didj

m(2m− 1)

(

1−
didj

m(2m− 1)

)m−1

.

For regular graphs with the same degree d at every vertex we obtain

E(r21) =

(

n
2

)

d
2

(nd− 1)

(

1−
2d

n(nd− 1)

)
nd
2
−1

.

This expected value is for large n and small d approximately equal to

E(r21) ≈

(

n
2

)

d
2

(nd− 1)
exp

(

−
d(nd− 2)

n(nd− 1)

)

≈
(n− 1)d

2
exp

(

−
d

n

)

≈
nd

2
−

d(d+ 1)

2
+

d
2(d+ 2)

4n

and it follows for this case that

P
′′′

0
=

e
λ
λ
m

m!
≈

λ
m
e
m−λ

mm
√
2πm

≈
e
(d+1

2
)

√
2πm

(

1−

(

d+1

2

)

m

)m

.

In Table 9 we give some numerical examples of the probability that a RSM multigraph is
simple. These probabilities are compared to the previously given asymptotic probabilities
P

′

0
and P

′′

0
and the approximate probability P

′′′

0
. Here, we look at small graphs with 6

to 8 vertices, and study cases where the numbers of edges are in the interval ±1 of the
number of vertices. For each case presented in Table 9, we focus on degree sequences with
positive degrees at each vertex that are at most 3 so that a reasonable number of simple
graphs is possible. From Table 9 we see that the Poisson approximation is close to the RSM
probability of simplicity but, as expected, the asymptotic probabilites do not perform well
for these small examples. In particular, the best Poisson approximations are for cases where
m = n + 1. Further we note that the Poisson approximations do not perform well for the
regular graphs presented in Table 9.
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Table 9: Some numerical examples of the probability that an RSM multigraph is simple,
compared to the suggested Poisson approximation ofm single edge occupancies of non-loops,
and the two asymptotic probabilities suggested by Janson (2009).

n = 6, m = 5
Degree sequence RSM Poisson Asymptotic 1 Asymptotic 2

d = (3, 3, 1, 1, 1, 1) 0.107 0.104 0.482 0.383
d = (3, 2, 2, 1, 1, 1) 0.195 0.116 0.540 0.472
d = (2, 2, 2, 2, 1, 1) 0.284 0.128 0.603 0.571

n = 6, m = 6
Degree sequence RSM Poisson Asymptotic 1 Asymptotic 2

d = (3, 3, 3, 1, 1, 1) 0.042 0.070 0.356 0.269
d = (3, 3, 2, 2, 1, 1) 0.086 0.082 0.401 0.329
d = (3, 2, 2, 2, 2, 1) 0.132 0.093 0.450 0.397
d = (2, 2, 2, 2, 2, 2) 0.180 0.104 0.503 0.472

n = 6, m = 7
Degree sequence RSM Poisson Asymptotic 1 Asymptotic 2

d = (3, 3, 3, 3, 1, 1) 0.031 0.051 0.276 0.204
d = (3, 3, 3, 2, 2, 1) 0.047 0.061 0.311 0.246
d = (3, 3, 2, 2, 2, 2) 0.069 0.070 0.349 0.294

n = 7, m = 6
Degree sequence RSM Poisson Asymptotic 1 Asymptotic 2

d = (3, 3, 2, 1, 1, 1, 1) 0.132 0.100 0.473 0.397
d = (3, 2, 2, 2, 1, 1, 1) 0.200 0.110 0.526 0.472
d = (2, 2, 2, 2, 2, 1, 1) 0.270 0.119 0.582 0.554

n = 7, m = 7
Degree sequence RSM Poisson Asymptotic 1 Asymptotic 2

d = (3, 3, 3, 2, 1, 1, 1) 0.068 0.076 0.365 0.294
d = (3, 3, 2, 2, 2, 1, 1) 0.103 0.085 0.406 0.348
d = (3, 2, 2, 2, 2, 2, 1) 0.143 0.093 0.451 0.407
d = (2, 2, 2, 2, 2, 2, 2) 0.189 0.102 0.499 0.472

n = 7, m = 8
Degree sequence RSM Poisson Asymptotic 1 Asymptotic 2

d = (3, 3, 3, 3, 2, 1, 1) 0.043 0.059 0.291 0.229
d = (3, 3, 3, 2, 2, 2, 1) 0.060 0.067 0.324 0.269
d = (3, 3, 2, 2, 2, 2, 2) 0.082 0.075 0.360 0.313

n = 8, m = 7
Degree sequence RSM Poisson Asymptotic 1 Asymptotic 2

d = (3, 3, 3, 1, 1, 1, 1, 1) 0.098 0.090 0.424 0.348
d = (3, 3, 2, 2, 1, 1, 1, 1) 0.148 0.098 0.469 0.407
d = (3, 2, 2, 2, 2, 1, 1, 1) 0.202 0.106 0.516 0.472
d = (2, 2, 2, 2, 2, 2, 1, 1) 0.262 0.113 0.566 0.542

n = 8, m = 8
Degree sequence RSM Poisson Asymptotic 1 Asymptotic 2

d = (3, 3, 3, 3, 1, 1, 1, 1) 0.059 0.071 0.337 0.269
d = (3, 3, 3, 2, 2, 1, 1, 1) 0.084 0.079 0.373 0.313
d = (3, 3, 2, 2, 2, 2, 1, 1) 0.115 0.086 0.411 0.362
d = (3, 2, 2, 2, 2, 2, 2, 1) 0.151 0.093 0.452 0.415
d = (2, 2, 2, 2, 2, 2, 2, 2) 0.193 0.099 0.496 0.472

n = 8, m = 9
Degree sequence RSM Poisson Asymptotic 1 Asymptotic 2

d = (3, 3, 3, 3, 3, 1, 1, 1) 0.040 0.058 0.275 0.217
d = (3, 3, 3, 3, 2, 2, 1, 1) 0.053 0.065 0.305 0.251
d = (3, 3, 3, 2, 2, 2, 2, 1) 0.071 0.071 0.336 0.288
d = (3, 3, 2, 2, 2, 2, 2, 2) 0.093 0.078 0.369 0.329
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A convenient way to obtain the IEA multiplicity distribution is to assume that the
stubs are randomly generated and independently assigned to vertices, independent stub
assignments (ISA). If stubs ξk for k = 1, ..., 2m are independently and identically distributed
according to a probability distribution p = (p1, ..., pn) with positive probabilities for the n

vertices, it follows that the sequence of stub frequencies d(ξ) is multinomially distributed
with parameters 2m and p. It also follows that edges in ξ are independent and equal to (i, j)
with probabilities Pij = pipj for i = 1, . . . , n and j = 1, . . . , n. Edges in η are independent
and equal to (i, j) with probabilities Qij = p

2

i for i = j, and Qij = 2pipj for i < j . Now
the edge multiplicity sequence m(η) is multinomially distributed with parameters m and
Q. This is an IEA distribution with a new Q based on ISA. The conditional distribution of
m(η) given d(ξ) is equal to the previous edge multiplicity distribution obtained by random
stub matching with fixed degrees. This is a consequence of that the conditional probabilities
under ISA and IEA can be transformed according to

P (m(η) = m|d(ξ) = d) =

(

m
m

)

Qm

(

2m
d

)

pd
=

(

m
m

)

2m2

(

2m
d

) ,

using that

Qm =
∏

i≤j

Q
mij

ij =

(

n
∏

i=1

p
2mii
i

)





∏

i<j

(2pipj)
mij



 = 2m2

n
∏

i=1

p
di
i = 2m2pd

and m2 =
∑∑

i<j mij . The multinomial distribution for d(ξ) with parameters 2m and p

can be considered as a Bayesian model for the stub frequencies.
By using that the sequence of stub frequencies d(ξ) is multinomially distributed with

parameters 2m and p under ISA, we derive a formula for the expected entropy of the
distribution of multigraphs m(η). This expected value is found by using the expected
entropy under ISA which is equal to the difference H(m)−H(d) using calculation rules for
entropy (given for instance in Frank 2011). Under ISA we use normal approximations to
the multinomial distributions of m and d and obtain the approximate entropies

H(m) ≈ log

√

(2πem)r−1

∏

i≤j

Qij

and

H(d) ≈ log

√

(4πem)n−1

∏

i

pi .
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It follows that the expected entropy under ISA is given by

E [H(m|d)] ≈ log

√

(2πem)r−1

∏

i≤j

Qij − log

√

√

√

√(4πem)n−1

n
∏

i=1

pi

= log

√

(2πem)r−n
∏

i≤j Qij

2n−1
∏n

i=1
pi

= log

√

(2πem)(
n
2
) 2(

n
2
) (p1 · · · pn)n+1

2n−1 (p1 · · · pn)

= log

√

(2πem)(
n
2
) 2(

n−1

2
) (p1 · · · pn)n .

For fixed n and p this is a linear expression in logm which is denoted

H
∗ = a

∗ + b
∗ logm ,

where

a
∗ = a

∗(n,p) = log

√

(2πe)(
n
2
) 2(

n−1

2
) (p1 · · · pn)n

and
b
∗ = b

∗(n) = n(n− 1)/4 .

If this expected entropy is calculated with p = d/2m for a fixed degree sequence d, it can
be considered as an approximation to the entropy H of the distribution of multigraphs m

under RSM with this degree sequence d. In particular, for the distribution of multigraphs
under RSM with all di = 2m/n, its entropy is approximately given by

H
∗ = log

√

(2πem)(
n
2
) 2(

n−1

2
)
n−n2

,

corresponding to uniform p.
Another approximation H

∗∗ to the entropy H of the distribution of multigraphs m

under RSM can be based on asymptotic results for the expected entropy, E [H(m|d)] =
H(m)−H(d), under ISA. Both m and d are multinomially distributed and obtained from
sequences of m independent identically distributed sites, and 2m independent identically
distributed stubs. The central limit theorem in weak form yields asymptotic equipartition
properties for rc and nc stubs. Here rc and nc are given by the entropies of site and stub
probabilities according to

log rc = h(Q) and log nc = h(p) .

In particular, for uniform ISA it follows that nc = n and rc = n
22−(n−1)/n which is about

(

n+1

2

)

for large n. See for instance Cover and Thomas (1991) which has a detailed presen-
tation of the equipartition property. The equipartition properties implies that m and d are
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asymptotically multinomially distributed with rc equal site probabilities and nc equal stub
probabilities. Under ISA it holds that

h(Q) = 2h(p)− 1 +
n
∑

i=1

p
2

i ,

and hence
rc = n

2

c 2−(nc−1)/nc .

The asymptotic entropies of m and d under ISA are thus given by

Hc(m) = log

√

(2πem)rc−1 r
−rc
c

and

Hc(d) = log

√

(4πem)nc−1 n
−nc
c .

The difference

Hc(m)−Hc(d) = log

√

(2πem)rc−1 n
nc
c

(4πem)nc−1 r
rc
c

is the asymptotic expected conditional entropy of m given d, when d is obtained from p.
The RSM entropy H of m with a fixed d can be approximated by the asymptotic expression
obtained with p = d/2m for this fixed d. Let H

∗∗ denote this approximation. It can be
given as

H
∗∗ = a

∗∗ + b
∗∗ logm ,

where

a
∗∗ = a

∗∗(n, h(p)) = log

√

(2πe)rc−1 n
nc
c

(4πe)nc−1 r
rc
c

,

and

b
∗∗ = b

∗∗(n, h(p)) =
rc − nc

2
.

Now rc = n
22−(nc−1)/nc where nc = 2h(p) and p is choosen as p = d/2m in order to estimate

the RSM entropy H with this d. Note that the dependency of H∗∗ on p is only via the
degree distribution entropy h(p).

Using these results, a few examples are given to illustrate the performance of the ap-
proximations H∗ and H

∗∗ to the entropy H of the distribution of multigraphs under RSM.
In Table 10 we compare two approximations using multigraphs with n = 3 vertices and
m = 6 edges. Thus, the approximations for this case are given by

H
∗ = log

√

(πe)3 2 (d1 · d2 · d3)3(12)−6
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and

H
∗∗ = log

√

(2πe6)rc−1 n
nc
c

(4πe6)nc−1 r
rc
c

,

where d = (d1, d2, d3) = 2mp is varied. As seen in Table 10, both approximations are
good for degree distributions that are uniformly or nearly uniformly distributed. Note that
the approximation H

∗ is not useful for very skew degree distributions, e.g. d = (10, 1, 1),
which yields a negative entropy approximation. However, H∗∗ yields better approximations
for these skew degree distributions.

Table 10: The entropy of the distribution of multigraphs under random stub matching
(RSM) and its approximations in multigraphs with n = 3 vertices and m = 6 edges for
various degree sequences d.

Entropy Expected entropy Asymptotic entropy
d = 2mp RSM (d) ISA (p) ISA (p)

H H
∗

H
∗∗

(10, 1, 1) 0.440 -0.631 0.754
(9, 2, 1) 1.096 0.641 1.247
(8, 3, 1) 1.651 1.264 1.665
(7, 4, 1) 2.044 1.597 1.965
(6, 5, 1) 2.242 1.747 2.121
(7, 3, 2) 2.362 2.475 2.343
(6, 4, 2) 2.723 2.763 2.642
(5, 5, 2) 2.847 2.852 2.744
(6, 3, 3) 2.889 3.019 2.815
(5, 4, 3) 3.172 3.247 3.057
(4, 4, 4) 3.330 3.386 3.197

To visualize these findings further, we conclude this section with comparisons between
the entropy under RSM and the approximations. First, consider regular multigraphs with
n = 4 vertices having the same degree d that varies from 1 to 15, so that the number of
edges m = nd/2 = 2d varies from 2 to 30. Thus, the degree sequences of these multigraphs
are uniformly distributed under ISA with pi = 1/n. In Figure 13 where we see that the
entropy under RSM is well approximated by both H

∗ = a
∗+b

∗ logm = −2.22+3 logm, and
H

∗∗ = a
∗∗+b

∗∗ logm = −1.67+2.76 logm. The RSM entropy deviates slightly from linearity
in logm, which is easier to see in Figure 14 where the entropy and its approximations are
plotted against logm.
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Figure 13: The entropy of the distribution of multigraphs under random stub matching
(RSM) and its approximations for different regular multigraphs with n = 4 vertices and
different numbers of edges m between 2 and 30.
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Figure 14: The entropy of the distribution of multigraphs under random stub matching
(RSM) and its approximations for different regular multigraphs with n = 4 vertices and
different numbers of edges m between 2 and 30. Entropy is plotted against logm.
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In Figure 15 and 16, we consider two cases with skew degree distributions in multigraphs
with n = 3 and n = 4 vertices. Here, p = (4/7, 2/7, 1/7) and p = (5/10, 3/10, 1/10, 1/10)
which implies that possible degree sequences for RSM are multiples of the degree sequences
d = (8, 4, 2) and d = (5, 3, 1, 1), respectively. As seen from these two figures, the RSM
entropies are well approximated by H

∗, but not by H
∗∗ which deviates more and more from

RSM entropy as m increases. When m increases, the same p will result in different degree
sequences d which in turn give entropies that are harder to approximate by the asymptotic
method. From these examples we also note that both the approximations can be either
larger or smaller than the RSM entropy H.

In Table 11 we compare the RSM entropy and its approximations using multigraphs with
n = 8 vertices and m = 8 edges. It is clear that approximations H∗∗ perform much better
than approximations H

∗, in particular for the skew degree distributions. However, as the
degree sequences become more uniformly distributed, the performance of H∗ is improved.

The findings from these considered cases can be summarized as follows. The approxima-
tion H

∗ performs well for multigraphs with degree distributions that are uniformly or close
to uniformly distributed. This holds for all multigraphs, no matter size. For skew degree
distributions, H∗ performs well if the edge frequency m is large. The approximation H

∗∗

performs well for small multigraphs, i.e. multigraphs with small numbers of vertices and
edges, no matter degree distributions. Further, if the number of vertices n increases, this
approximation is much better than H

∗. If the degree distribution is uniformly distributed,
H

∗∗ also performs well for small number of vertices but large edge frequencies.
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Figure 15: The entropy of the distribution of multigraphs under random stub matching
(RSM) and its approximations for multigraphs with n = 3 vertices and degree sequences
that are multiples of d = (8, 4, 2) for edge frequencies m = 7, 14, 21, . . . , 70. Entropy is
plotted against logm.
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Figure 16: The entropy of the distribution of multigraphs under random stub matching
(RSM) and its approximations for multigraphs with n = 4 vertices and degree sequences
that are multiples of d = (5, 3, 1, 1) for edge frequencies m = 5, 10, 15, . . . , 50. Entropy is
plotted against logm.
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Table 11: The entropy of the distribution of multigraphs under random stub matching
(RSM) and its approximations in multigraphs with n = 8 vertices and m = 8 edges for
various degree sequences d.

Entropy Expected entropy Asymptotic entropy
d = 2mp RSM (d) ISA (p) ISA (p)

H H
∗

H
∗∗

(9, 1, 1, 1, 1, 1, 1, 1) 6.589 -5.502 8.447
(8, 2, 1, 1, 1, 1, 1, 1) 7.869 -2.181 9.897
(7, 3, 1, 1, 1, 1, 1, 1) 8.790 -0.612 10.82
(6, 4, 1, 1, 1, 1, 1, 1) 9.352 0.1589 11.340
(5, 5, 1, 1, 1, 1, 1, 1) 9.541 0.394 11.505
(7, 2, 2, 1, 1, 1, 1, 1) 9.144 1.048 11.259
(6, 3, 2, 1, 1, 1, 1, 1) 9.992 2.498 12.037
(5, 4, 2, 1, 1, 1, 1, 1) 10.419 3.106 12.391
(5, 3, 3, 1, 1, 1, 1, 1) 10.701 3.786 12.646
(4, 4, 3, 1, 1, 1, 1, 1) 10.938 4.159 12.831
(6, 2, 2, 2, 1, 1, 1, 1) 10.379 4.159 12.443
(5, 3, 2, 2, 1, 1, 1, 1) 11.109 5.446 13.023
(4, 4, 2, 2, 1, 1, 1, 1) 11.352 5.819 13.195
(4, 3, 3, 2, 1, 1, 1, 1) 11.652 6.498 13.417
(3, 3, 3, 3, 1, 1, 1, 1) 11.958 7.178 13.625
(5, 2, 2, 2, 2, 1, 1, 1) 11.526 7.106 13.373
(4, 3, 2, 2, 2, 1, 1, 1) 12.084 8.159 13.731
(3, 3, 3, 2, 2, 1, 1, 1) 12.398 8.838 13.914
(4, 2, 2, 2, 2, 2, 1, 1) 12.525 9.819 14.005
(3, 3, 2, 2, 2, 2, 1, 1) 12.847 10.498 14.159
(3, 2, 2, 2, 2, 2, 2, 1) 13.304 12.159 14.351
(2, 2, 2, 2, 2, 2, 2, 2) 13.771 13.819 14.482
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Statistical Analysis of Multigraphs

Termeh Shafie

Abstract

This article analyzes multigraphs by performing statistical tests of multigraph mod-
els obtained by random stub matching (RSM) and by independent edge assignments
(IEA). The tests are performed using goodness-of-fit measures between the multiplicity
sequence of an observed multigraph and the expected multiplicity sequence according
to a simple or composite IEA hypothesis. Test statistics of Pearson type and of infor-
mation divergence type are used. The expected values of the Pearson goodness-of-fit
statistic under different multigraph models are derived, and some approximations of the
test statistics with adjusted χ

2-distributions are considered. Illustrations of test perfor-
mances are presented for all models, and the results indicate that even for very small
number of edges, the null distributions of both statistics are well approximated by their
asymptotic χ

2-distribution. This holds true for testing simple as well as composite hy-
potheses with different asymptotic distributions. The non-null distributions of the test
statistics can be well approximated by adjusted χ

2-distributions which can be used for
power approximations. The influence of RSM on both test statistics is substantial for
small number of edges and implies a shift of their distributions towards smaller values
compared to what holds true for the null distributions under IEA.

Keywords: multigraph, multiplicity, goodness-of-fit, information divergence.

1 Introduction

A random multigraph model is given by a probability distribution over some class of multi-
graphs. In this article multigraphs are analyzed by performing statistical tests of some
multigraph models presented in Frank and Shafie (2012) and Shafie (2012). Two main
multigraph models are considered. The first is obtained by random stub matching with
fixed degrees (RSM) so that edge assignments to sites are dependent, and the second is
obtained by independent edge assignments (IEA) according to a common probability distri-
bution. Further, we present two different methods for obtaining an approximate IEA model
from an RSM model. This is done by assuming that the stubs are randomly generated
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and independently assigned to vertices (ISA) and can be viewed as a Bayesian model for
the stub frequencies under RSM. Another way of obtaining an approximate IEA model is
to ignore the dependency between edges in the RSM model and assume independent edge
assignments of stubs (IEAS). The tests are performed using goodness-of-fit measures be-
tween the multiplicity sequence of an observed multigraph and the expected multiplicity
sequence according to a simple or composite IEA hypothesis. The exact distributions of the
test statistics are investigated and compared to different approximations given by adjusted
χ
2-distributions.
In the next section, multigraph data structures are described and exemplified. It is shown

how they can be obtained by different kinds of vertex and edge aggregations. These kinds of
aggregations are powerful methods to analyze structures in very large graphs. In Section 3,
some basic notations are introduced, and the different multigraph models mentioned above
are defined.

Statistical tests of simple hypotheses are considered in Section 4 where the hypotheses
are fully specified IEA models. For an IEAS model, the edge probability parameters are
functions of a specified degree sequence d, and for an ISA model these parameters are
functions of a specified stub selection probability sequence p. The Pearson goodness-of-fit
statistic S and the divergence statistic T for these tests are defined. The expected value of S
is derived under different multigraph models, and in particular it is shown that for the null
distribution under RSM, this expected value only depends on the numbers of vertices and
edges. Test illustrations for IEAS, ISA and RSM models are presented where the moments
and cumulative distribution functions of the test statistics are used to compare and evaluate
their performances. The convergence of the null distributions of S and T to their asymptotic
χ
2-distributions is rapid and even for small number of edges m, a good fit is seen between

the null distributions and the asymptotic χ
2-distribution. For cases when flat d or p is

tested against skew d or p (or vice versa), both statistics have good powers of rejecting a
simple hypothesis about a false model. The non-null distributions of S and T needed for
determining power are approximated by adjusted χ

2-distributions. The influence of RSM
on the distributions of S and T is substantial for small m and implies a shift towards smaller
values of the statistics compared to what holds true for the null distributions under IEA.

In Section 5, statistical tests of composite multigraph hypotheses are illustrated for
IEAS, ISA and RSM models. Moments and cumulative distribution functions of the test
statistics are used for comparisons and evaluations of their performances. The composite
multigraph hypotheses might be unspecified IEAS or ISA where the parameters have to be
estimated from data. For composite IEAS or ISA hypotheses including the correct model,
the following results are noted. The null distributions of S and T converge faster to their
asymptotic χ

2-distributions for flat d or p than for skew d or p, but even for rather small
m, there is a good fit between these distributions and their asymptotic χ

2-distributions.
Further, both statistics have very poor powers of detecting differences between IEAS and
ISA hypotheses for small as well as for large m.
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2 Data Structures and Possible Applications

A multigraph is defined as a graph where multiple edges and edge-loops are permitted.
Such data structures are common in contexts when several edges can be mapped on the
same vertex pair, but they are also obtained by different types of aggregation. Several
simple graphs representing different binary relations can be aggregated to a multigraph, or
an initial very large graph can be transformed to a multigraph by aggregating vertices into
special subsets. Such possibilities are illustrated by some examples.

Consider a social network of friendships between 15 school children consisting of 12
pairs of mutual friendships. The children are categorized by two attributes, gender with
categories labeled G (girl) and B (boy), and living area with categories labeled N (north)
and S (south). Thus, there are four vertex categories BN, BS, GN and GS which are
displayed together with mutual friendships in Figure 1. By aggregating vertices in the same
category, we obtain a multigraph on 4 new vertices corresponding to the categories, and it
has the same number of edges as the initial graph. This is shown in Figure 2. By performing
this kind of transformation, we reduce the number of vertices but increase the number of
multiple edges and edge loops. Generally, social networks of contacts between individuals
can be transformed to multigraphs on vertices corresponding to combined categories of
individual attributes, and edge multiplicities represent frequencies of contacts within and
between these categories.

SB NG NG NG

NB SB NB NG SG

NB NG NG SG SG NG

Figure 1: Initial graph of friendships between 15 children in a school and 12 pairs of mutually
good friends. The children are categorized by gender, girl (G) or boy (B), and living area,
north (N) or south (S).

NG NB

SG SB

Figure 2: Final multigraph of the friendships in Figure 1 categorized by gender and living
area. The edges represent pairwise friendships within and between categories.
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As another illustration of vertex aggregation, consider network of co-operations between
business companies which are categorized by branch. Figure 3 shows 20 co-operation pairs
between 25 companies belonging to branch A, B or C. The multigraph on the three branches
is given in Figure 4 and has edge multiplicities that represent co-operations within and
between the branches. It is conveniently presented in table format.

B

A C

B C A

C B B B

A C A C C

B C A B

C A C

B B

A

Figure 3: Initial graph of 20 co-operations between 25 companies. The companies are
categorized by three different branches labeled A, B and C.

A B

C

Figure 4: Final multigraph of the co-operations in Figure 3 categorized by branch. The
edges represent pairwise co-operations within and between the three branches.
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Vertex aggregation is a powerful method to analyze structure in very large graphs.
Another type of aggregation that is often useful is edge aggregation, which is illustrated by
the following example of a time series. Assume that we are studying a graph with a fixed
number of vertices and different categories of pairwise contacts. Further, assume that we
study this graph over a period of time, i.e. how the different contacts vary over a time period.
For example, let the initial graph have 5 vertices representing 5 different departments in
a company and we study the variation of 3 different edge categories representing pairwise
contact types between and within the departments. These contact types are phone call,
video call or meeting. The connections between the five departments have been observed
every day for a total time period of three days. This is illustrated in Figure 5 where the
edge attributes are labeled with the colors blue, red and green.

1 2 1 2 1 2

3 3 3

4 5 4 5 4 5

Day 1 Day 2 Day 3

Figure 5: Initial daily graphs on 5 different departments of a company showing three con-
nection types labeled blue (phone call), red (video call) and green (meeting).

The transformation with respect to edge attributes of the graphs in Figure 5 can be
done in different ways. If we aggregate over time periods, we obtain for each edge category
a multigraph for the total time period of three days, which is shown in Figure 6.

1 2 1 2 1 2

3 3 3

4 5 4 5 4 5

Phone call Video call Meeting

Figure 6: Multigraphs obtained by aggregating each of the edge categories in Figure 5 over
all three days.

5



Another way of transforming the initial graphs in Figure 5 to multigraphs is by aggre-
gating over contact types (ignoring edge colors), to get one multigraph for each time period.
If we also aggregate over the three time periods we obtain a multigraph with 5 vertices and
a total of 25 edges, shown in Figure 7.

1 2

3 5

4

Figure 7: Final multigraph of the total number of connections during 3 days within and
between the five departments in Figure 5.

3 Some Random Multigraph Models

In order to analyze multigraphs, we perform statistical tests of some random multigraph
models considered in Frank and Shafie (2012) and Shafie (2012). First we introduce some
basic notations. A finite graph g with n labeled vertices and m labeled edges associates with
each edge an ordered or unordered vertex pair. Let V = {1, . . . , n} and E = {1, . . . ,m} be
the sets of vertices and edges labeled by integers, and let R denote the set of available sites
for the edges. For directed graphs the site space is R = V

2 and the number of sites is given
by r = n

2. For undirected graphs we use the site space R = {(i, j) ∈ V
2 : i ≤ j} where we

consider (i, j) with i ≤ j as a canonical representation for the unordered vertex pair. The
number of sites for undirected graphs is given by r =

(

n+1
2

)

. The graph is thus an injective
map g : E → R ⊆ V

2.
A random multigraph is given by a probability distribution over some class of multi-

graphs. A multigraph with labeled vertices and undistinguished edges is represented by the
edge multiplicity sequence m = (mij : (i, j) ∈ R) where the edge multiplicity mij denotes
the number of multiple edges at site (i, j) ∈ R. For undirected multigraphs, the edge sites
are listed in the canonical order

(1, 1) < (1, 2) < · · · < (1, n) < (2, 2) < (2, 3) < · · · < (n, n) ,
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so that mii is the number of loops at vertex i, and mij for i < j is the number of edges
between vertices i and j. In this case it is convenient to define mij = 0 for i > j. The edge
multiplicity sequence m has total

m·· =
∑∑

i≤j

mij = m and mi· +m·i =
n
∑

j=1

mij +
n
∑

j=1

mji = di

is the degree of vertex i, which can also be interpreted as the number of edge-stubs or
half-edges at vertex i for i = 1, . . . , n. The stub multiplicity sequence d = (d1, . . . , dn) has
total

∑n
i=1 di = 2m.

Consider a random undirected multigraph model where the edges are independently as-
signed to sites according to a common probability model. Let Qij denote the probability of
assigning an edge to site (i, j) ∈ R so that

∑∑

i≤j Qij = 1. This independent edge assign-
ment (IEA) model has edge multiplicity sequence m(IEA) that is multinomially distributed
with parameters m and Q = (Qij : (i, j) ∈ R) so that edge sequences m have probabilities

P (m(IEA) = m) =

(

m

m

)

Qm =
m!

∏

i≤j mij !

∏

i≤j

Q
mij

ij .

Another random multigraph model is obtained by assuming that the edges are formed
by random matching of pairs of edge-stubs in a given sequence of edge-stubs. This random
stub matching (RSM) model has fixed stub multiplicity sequence d = (d1, . . . , dn). Under
RSM, the edge assignments to sites are dependent. The probability that an edge is assigned
to site (i, j) ∈ R is given by

Qij =







(

di
2

)

/

(

2m
2

)

for i = j

didj/
(

2m
2

)

for i < j ,

so that the edge probability sequence Q = Q(d) is a function of the stub multiplicity
sequence d. The probability of edge multiplicity sequence m under RSM is shown in Shafie
(2012) to be given by

P (m(RSM) = m) =
2m2

(

m
m

)

(

2m
d

) =
2m2m!

∏n
i=1 di!

(2m)!
∏

i≤j mij !
,

where m2 =
∑∑

i<j mij .
A Bayesian version of the RSM model is obtained by assuming that the stubs are in-

dependently assigned to vertices according to a probability distribution p = (p1, ..., pn).
The stub multiplicity sequence under independent stub assignments (ISA) is multinomially
distributed with parameters 2m and p. This multinomial distribution can be viewed as a
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Bayesian model for the stub multiplicities and leads to independent edge assignments. Thus
by the Bayesian assumption the RSM model is turned into a special IEA model with edge
probability sequence Q defined as a function of p according to

Qij =

{

p
2
i for i = j

2pipj for i < j .

Another way to get an approximate IEA model from an RSM model is to ignore the de-
pendency between the edge assignments in the RSM model. The edge probability sequence
Q = Q(d) of the RSM model is used to define a model with independent edge assignment
of stubs (IEAS). Note that the IEAS model, like other IEA models, has

(

m+r−1
m

)

different
outcomes of m, while the RSM models are restricted to outcomes that are consistent with
stub multiplicity sequence d only.

The following notations will be used for the models presented in this section. Inde-
pendent edge assignment is denoted IEA(Q), random stub matching is denoted RSM(d),
independent stub assignments is denoted ISA(p), and independent edge assignments of
stubs is denoted IEAS(d).

4 Statisticial Tests of a Simple Multigraph Hypothesis

4.1 Test Statistics

A simple multigraph hypothesis H0 is defined as a fully specified IEA(Q0) which can be an
ISA(p0) or an IEAS(d0) with Q0 specified as a function of d0 or p0. The tests are per-
formed using goodness-of-fit measures between the multiplicity sequence m of an observed
multigraph and the expected multiplicity sequence according to H0.

Asymptotic theory for likelihood ratios and goodness-of-fit statistics is given for instance
by Anderson (1980) and Cox and Hinkley (1974). The Pearson goodness-of-fit statistic is
given by

S0 =
∑∑

i≤j

(mij −mQ0ij)
2

mQ0ij
=
∑∑

i≤j

m
2
ij

mQ0ij
−m ,

which is asymptotically χ
2-distributed with df = r−1 degrees of freedom if the multiplicity

sequence is obtained according to IEA(Q) and the correct model Q0 = Q is tested. We
denote a random variable with this distribution χ

2
r−1. The divergence statistic is given by

D0 =
∑∑

i≤j

mij

m
log

mij

mQ0ij
,

and an asymptotic χ
2
r−1-statistic can be obtained as

T0 =
2m

log e
D0 .
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Divergence statistics are used as goodness-of-fit statistics for instance by Kullback (1959)
and Frank (2011). For good asymptotics it is normally assumed that m is large and mQij

is not too small (for instance mQij ≥ 5 and m ≥ 5r). By approximation of the logarithm
function it can be shown that S0 ≈ T0 for large m. The critical region for the tests is taken
as values of S0 and T0 above a critical value cv given by

cv = df + 2
√

2df = r − 1 +
√

8(r − 1) ,

which has a significance level approximately equal to 5% given by

α = P (χ2
r−1 > cv) .

The power functions

P (S0 > cv) = 1− βS0
(Q) and P (T0 > cv) = 1− βT0

(Q)

are calculated using the distributions of S0 and T0 when m is multinomially distributed with
parameters m and Q, for Q = Q0 and for Q 6= Q0. Specifically, S0 and T0 are compared to
χ
2
r−1 via moments and cumulative distribution functions. For instance, the expected value

of S0 reveals how far from E(χ2
r−1) = r − 1 the distribution of S0 is. This expected value

is given by

E(S0) =
∑∑

i≤j

E(m2
ij)

mQ0ij
−m =

∑∑

i≤j

Qij + (m− 1)Q2
ij

Q0ij
−m ,

where mij is binomially distributed with parameters m and Qij so that

E(m2
ij) = Var(mij) + [E(mij)]

2 = mQij(1−Qij) +m
2
Q

2
ij = mQij +m(m− 1)Q2

ij .

In particular, if Q = Q0 so that Qij = Q0ij for i ≤ j, the null distribution of S0 has
expected value

E(S0) =
∑∑

i≤j

[1 + (m− 1)Qij ]−m = r − 1 .

Under the ISA(p) model and ISA(p0) hypothesis, the expected value of S0 is given as

E(S0) =
n
∑

i=1

L
2
i

[

1 + (m− 1)p2i
]

+
∑∑

i 6=j

LiLj

2
[1 + (m− 1)2pipj ]−m

=
n
∑

i=1

L
2
i + (m− 1)

n
∑

i=1

(Lipi)
2 +

n
∑

i=1

n
∑

j=1

LiLj

2

+ (m− 1)
n
∑

i=1

n
∑

j=1

LiLjpipj −

n
∑

i=1

L
2
i

2
− (m− 1)

n
∑

i=1

(Lipi)
2 −m

=

∑n
i=1 L

2
i + (

∑n
i=1 Li)

2

2
−m+ (m− 1)

(

n
∑

i=1

Lipi

)2

,
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where Li = pi/p0i is the likelihood ratio for stub assignments. As seen, the variation of
E(S0) depends on

∑n
i=1 Li,

∑n
i=1 L

2
i and

∑n
i=1 Lipi. In particular, for a uniform ISA(p0)

hypothesis where poi = 1/n,

E(S0) =
n
2
∑n

i=1 p
2
i + n

2

2
−m+ (m− 1)n2

(

n
∑

i=1

p
2
i

)2

,

which by letting s2 =
∑n

i=1 p
2
i can be simplified to

E(S0) = m(n2
s
2
2 − 1) +

n
2

2
(1 + s2 − 2s22) .

From this we see that E(S0) grows linearly with m having coefficients depending on n and
s2. By using

E(S0) = s
2
2n

2(m− 1) + s2
n
2

2
+

n
2

2
−m

and 1/n ≤ s2 ≤ 1, it follows that

r − 1 ≤ E(S0) ≤ m(n2 − 1) .

We also note that if p = p0 so that pi = p0i, the null distibution has

E(S0) =
n+ n

2

2
−m+ (m− 1) =

(

n+ 1

2

)

− 1 = r − 1

which is consistent with the result shown previously for Q = Q0.
The expected value of S0 can also be considered for the RSM(d) model when H0 is

RSM(d0) or IEAS(d0) since Q0 of IEAS and RSM are identical. Shafie (2012) gives the
moments of mij under RSM as

E(mij) = mQij for i ≤ j ,

and
Var(mij) = σ

2
ij +∆ij for i ≤ j ,

where σ2
ij = mQij(1−Qij) is the variance under IEA, and ∆ij is the difference between the

variances of mij under RSM and IEA:

∆ij = m(m− 1)(Qijij −Q
2
ij) ,

where

Qijij =















Qii

(

(di−2)(di−3)
(2m−2)(2m−3)

)

for i = j

Qij

(

2(di−1)(dj−1)
(2m−2)(2m−3)

)

for i < j .
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A general expression for the expected value of S0 under RSM is here obtained as

E(S0) =
∑∑

i≤j

E(m2
ij)

mQ0ij
−m

=
∑∑

i≤j

σ
2
ij +∆ij +m

2
Q

2
ij

mQ0ij
−m

=
∑∑

i≤j

mQij(1−Qij) + ∆ij +m
2
Q

2
ij

mQ0ij
−m .

For Q = Q0 so that Qij = Q0ij for i ≤ j, this simplifies to

E(S0) = r − 1 +
∑∑

i≤j

∆ij

mQij

r − 1 +
∑∑

i≤j

m(m− 1)(Qijij −Q
2
ij)

mQij

= r − 1 + (m− 1)





∑∑

i≤j

Qijij

Qij
−
∑∑

i≤j

Qij





= r −m+ (m− 1)





∑∑

i≤j

Qijij

Qij





= r −m+ (m− 1)





∑∑

i<j

2(di − 1)(dj − 1)

(2m− 2)(2m− 3)
+

n
∑

i=1

(di − 2)(di − 3)

(2m− 2)(2m− 3)





= r −m+
1

2(2m− 3)





∑∑

i 6=j

(di − 1)(dj − 1) +
n
∑

i=1

(di − 2)(di − 3)





= r −m+
1

2(2m− 3)

[

4m2 + 4mn+ n
2 − 6m+ 5n

]

=
(m− 1)n(n− 1)

2m− 3
,

which implies that the expected value of the null distribution only depends on the number
of vertices and edges. Using this expression we can now show for which values of m and n

the expected value of S0 under RSM is smaller than r − 1, i.e.

E(S0) =
(m− 1)n(n− 1)

2m− 3
< (r − 1) =

n(n+ 1)

2
− 1 .

11



Solving the inequality for m gives the following results:

E(S0) < r − 1 for m >
n+ 6

4
,

E(S0) = r − 1 if m =
n+ 6

4
is integer ,

and

E(S0) > r − 1 for m <
n+ 6

4
.

Note that the restriction 2m ≥ n imposed by no isolated vertices implies that E(S0) > r−1
only for some degenerate cases (n = 2, m = 1) and the extreme cases n = 3 or 4, and m = 2.
Therefore, under RSM the null distribution of the test statistic S0 has for all other cases
an expected value below r − 1, and its cumulative distribution function will tend to lie on
or above that of χ2

r−1 for all practical useful cases. Exceptional cases with m < (n + 6)/4
have so few stubs to be matched that they are unlikely to be useful in practice. Compare
the requirement of large m needed for good χ

2 asymptotics. Note however that the test
statistics may not have asymptotic χ2-distributions under RSM due to dependency between
edges.

Any test statistic S, like S0 or T0, can be approximated by an adjusted χ
2-distribution

given by

S
∗ =

µ

k
χ
2
k ,

where µ = E(S). For any positive integer k the approximation S
∗ has the same mean as S

and a variance given by

V ar(S∗) =
2µ2

k
.

Two particular approximations S
′

and S
′′

are given by S
∗ for k chosen as the integer part

of µ and for k = r − 1, respectively. Their variances are

V ar(S
′

) =
2µ2

⌊µ⌋
and V ar(S

′′

) =
2µ2

r − 1
,

and the preferred approximation is the one with variance closest to V ar(S) = σ
2. Equiva-

lently, the preferred adjusted χ
2-distribution is the one with degrees of freedom closest to

2µ2
/σ

2. A good approximation is useful for power calculations.

4.2 Test Illustrations for IEAS Models

We consider multigraphs with 4 vertices and 10 edges and test IEAS(d0) hypotheses against
IEAS(d) models. The degree sequences are chosen to include both skew and flat (uniform

12



and close to uniform) cases. The number of edge sites is here given by r = 10 and the test
statistics S0 and T0 are thus asymptotically χ

2
9-distributed when the correct model with

d0 = d is being tested. The critical value is cv = 17.49 and α = P (χ2
9 > cv) = 0.04.

The powers of these tests according to S0 and T0 are given in Table 1, where the diagonal
representing d0 = d is shaded. Note that there is one case where the order between the
components in d0 is switched. For this special case, the large deviations between the
degree values in models and hypotheses result in powers being close or equal to one for both
statistics. When d0 = d, αT0

= 1−βT0
< α ≤ 1−βS0

= αS0
. For flat d0 = d, both statistics

have significance levels equal or close to α, but for skew d0 = d, the significance level of T0

is much below α and that of S0 is much above α. For the majority of cases with not too
skew d0 6= d, both statistics have fairly good powers, but the inequalities between them
persist indicating that their cumulative distribution functions can approach an asymptotic
distribution from either below or above. To illustrate the fit of the distributions of the
statistics S0 and T0 to χ

2
9, their cumulative distribution functions are shown in Figure 8.

For flat d0 = d, the null distribution of S0 almost coincides with that of χ2
9. For skew

d0 = d, the null distributions of both statistics give poor fit to χ
2
9-distribution. This poor

fit is also noted for both flat and skew d0 6= d. Both S0 and T0 seem to have distributions
that would be better approximated by χ

2 with degrees of freedom chosen to be higher than
r − 1 in cases with d0 6= d.

The speed of the convergence of the cumulative distribution functions of S0 and T0 is
illustrated in Figures 9 and 10 where both flat and skew d0 = d are considered. The number
of edges m increases as multiples of the chosen degree sequences. We see that even for small
m, the null distributions of both statistics are fairly well approximated by their asymptotic
χ
2-distribution. A similar investigation of the non-null distributions of S0 and T0 is shown

in Figure 11 for flat d0 6= d and in Figure 12 for skew d0 6= d, where d0 is kept fixed and
d is varied. For both flat and skew d0, the deviations between the non-null distributions
of S0 and T0 and their asymptotic null distribution increase with the number of edges, and
even for m = 12 this deviation is clearly notable. Thus even for the rather small m = 12,
it is easy to detect simple hypotheses about false models.

Two cases in Table 2 illustrate how test statistics can be approximated by adjusted
χ
2-distributions. The approximated goodness-of-fit statistics are S

′

0 and S
′′

0 , and the ap-
proximated divergence statistics are T

′

0 and T
′′

0 . These approximations are evaluated by
comparing their variances to V ar(S0) and V ar(T0). The expected values and variances of
all versions of the test statistics are presented in Table 2 where the versions that are not
preferred are shaded so that it is easier to compare preferences in different cases. For the
first case, S

′′

0 is preferred to S
′

0 while T
′

0 is preferred to T
′′

0 . Equivalently, the preferred
adjusted χ

2-distribution for S0 has df = r − 1 = 9 since it is closer than df = ⌊µ⌋ = 13 to
2E(S0)/V ar(S0) = 7.31, and the adjusted χ

2-distribution for T0 has df = ⌊µ⌋ = 13 since
it is closer than df = r − 1 = 9 to 2E(T0)/V ar(T0) = 18.19. For the second case, S

′

0 is
preferred to S

′′

0 , while T
′′

0 is preferred to T
′

0.
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Table 1: Power according to S0 (upper value) and T0 (value below) when model is IEAS(d)
and hypothesis is IEAS(d0) for n = 4 and m = 10. α = 0.04.

d

(14, 2, 2, 2) (12, 3, 3, 2) (9, 7, 2, 2) (8, 8, 2, 2) (6, 6, 6, 2) (6, 5, 5, 4) (5, 5, 5, 5)
d0

(14, 2, 2, 2) 0.19 0.42 0.87 0.94 0.98 0.97 0.99
0.01 0.06 0.52 0.70 0.87 0.82 0.92

(2, 2, 14, 2) 1.00 1.00 1.00 1.00 0.98 0.99 0.99
1.00 1.00 1.00 1.00 0.87 0.92 0.92

(12, 3, 3, 2) 0.06 0.10 0.50 0.66 0.75 0.77 0.89
0.01 0.01 0.24 0.40 0.52 0.50 0.69

(9, 7, 2, 2) 0.34 0.31 0.13 0.14 0.74 0.78 0.87
0.25 0.14 0.01 0.02 0.40 0.44 0.60

(8, 8, 2, 2) 0.58 0.44 0.13 0.13 0.73 0.78 0.87
0.47 0.26 0.02 0.01 0.38 0.44 0.58

(6, 6, 6, 2) 0.85 0.54 0.24 0.21 0.08 0.36 0.53
0.74 0.39 0.19 0.18 0.02 0.14 0.27

(6, 5, 5, 4) 0.78 0.46 0.26 0.28 0.07 0.05 0.07
0.69 0.36 0.22 0.23 0.06 0.03 0.05

(5, 5, 5, 5) 0.91 0.70 0.48 0.46 0.13 0.05 0.04
0.63 0.63 0.43 0.41 0.12 0.04 0.03

Table 2: Moments of S0, S
′

0, S
′′

0 , T0, T
′

0 and T
′′

0 for some IEAS(d) models and IEAS(d0)
hypotheses with n = 4 and m = 10. The unshaded columns correspond to the best approx-
imations to the test statistics.

Case 1: d0 = (6, 6, 6, 2), d = (8, 8, 2, 2)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 13.62 13.62 13.62 13.40 13.40 13.40
Variance 50.74 28.52 41.20 19.74 27.64 39.93

Case 2: d0 = (12, 3, 3, 2), d = (14, 2, 2, 2)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 7.51 7.51 7.51 7.82 7.82 7.82
Variance 31.79 16.14 12.55 10.61 17.47 13.59
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Figure 8: Distributions of S0, T0, and χ
2
9 for some IEAS(d) models and IEAS(d0) hypotheses

with n = 4 and m = 10.
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Figure 9: Null distributions of S0 and T0 for some IEAS(d) models and IEAS(d0) hypotheses
with flat d0 = d when m increases.
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Figure 10: Null distributions of S0 and T0 for some IEAS(d) models and IEAS(d0) hy-
potheses with skew d0 = d when m increases.
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Figure 11: Non-null distributions of S0 and T0 for some IEAS(d) models and IEAS(d0)
hypotheses with flat d0 and different d when m increases.
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Figure 12: Non-null distributions of S0 and T0 for some IEAS(d) models and IEAS(d0)
hypotheses with skew d0 and different d when m increases.
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4.3 Test Illustrations for ISA Models

We now turn our attention to ISA(p0) hypotheses tested against ISA(p) models and consider
tests of different multigraphs of the same size. The stub selection probability sequences are
chosen to illustrate both skew and flat cases. Note that there is one case where the order
between the components in p0 is switched. The powers of these tests according to S0 and
T0 are given in Table 3. We see that most results are consistent with those seen in Table 1
for IEAS models. For p0 = p, αS0

and αT0
are on opposite sides of α = 0.04 but they are

both close to α except for very skew cases. For the majority of cases with p0 6= p, both
test statistics have reasonable powers unless p0 and p are too close. In Figure 13, the fit of
the distributions of the statistics S0 and T0 to that of χ2

9 are illustrated for some selected
cases. Overall, we see that even for these examples with small m, we have fairly good fit
for all illustrated cases with both flat and skew p0 = p, and p0 6= p.

The impact on the null and non-null distributions of S0 and T0 for skew and flat p0 when
m increases is illustrated in Figures 14 to 17 where similar results as those for IEAS models
are noted. The convergence to the asymptotic distribution is rapid for null distributions of
both statistics, and the deviations between the non-null distributions of both statistics and
their asymptotic null distribution increase with m. The latter result implies that adjusted
χ
2-distributions should be used to approximate the non-null distributions.
Two cases from Table 3 are chosen to illustrate the performance of the approximate

test statistics. By comparing variances we obtain the results presented in Table 4, where
non-preferred statistics are shaded.
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Table 3: Power according to S0 (upper value) and T0 (value below) when model is ISA(p)
and hypothesis is ISA(p0) for n = 4 and m = 10. α = 0.04.

p

(

7

10
, 1

10
, 1

10
, 1

10

) (

3

5
, 1

5
, 1

10
, 1

10

) (

1

2
, 1

6
, 1

6
, 1

6

) (

4

9
, 1

3
, 1

9
, 1

9

) (

3

8
, 3

8
, 1

8
, 1

8

) (

1

4
, 1

4
, 1

4
, 1

4

)

p0

(

7

10
, 1

10
, 1

10
, 1

10

)

0.10 0.33 0.57 0.80 0.92 0.99
0.01 0.07 0.19 0.47 0.67 0.88

(

1

10
, 1

10
, 7

10
, 1

10

)

1.00 1.00 1.00 1.00 1.00 0.99
1.00 1.00 0.99 1.00 1.00 0.88

(

3

5
, 1

5
, 1

10
, 1

10

)

0.06 0.08 0.36 0.32 0.50 0.92
0.01 0.01 0.11 0.11 0.24 0.72

(

1

2
, 1

6
, 1

6
, 1

6

)

0.04 0.04 0.06 0.27 0.42 0.53
0.05 0.03 0.02 0.14 0.25 0.35

(

4

9
, 1

3
, 1

9
, 1

9

)

0.27 0.09 0.29 0.06 0.11 0.74
0.24 0.05 0.14 0.02 0.04 0.49

(

3

8
, 3

8
, 1

8
, 1

8

)

0.54 0.19 0.29 0.04 0.05 0.58
0.47 0.14 0.19 0.02 0.02 0.38

(

1

4
, 1

4
, 1

4
, 1

4

)

0.88 0.66 0.32 0.35 0.25 0.03
0.86 0.63 0.28 0.33 0.23 0.03

Table 4: Moments of S0, S
′

0, S
′′

0 , T0, T
′

0 and T
′′

0 for some ISA(p) models and ISA(p0)
hypotheses with n = 4 and m = 10. The unshaded columns correspond to the best approx-
imations to the test statistics.

Case 1: p0 =
(

1
4 ,

1
4 ,

1
4 ,

1
4

)

, p =
(

3
8 ,

3
8 ,

1
8 ,

1
8

)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 14.56 14.56 14.56 14.43 14.43 14.43
Variance 50.98 30.30 47.13 22.05 29.74 46.27

Case 2: p0 =
(

3
5 ,

1
5 ,

1
10 ,

1
10

)

, p =
(

1
2 ,

1
6 ,

1
6 ,

1
6

)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 17.08 17.08 17.08 11.20 11.20 11.20
Variance 167.82 34.33 64.85 25.83 22.82 27.89
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Figure 13: Distributions of S0, T0 and χ
2
9 for some ISA(p) models and ISA(p0) hypotheses

with n = 4 and m = 10.
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Figure 14: Null distributions of S0 and T0 for some ISA(p) models and ISA(p0) hypotheses
with flat p0 = p when m increases.
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Figure 15: Null distributions of S0 and T0 for some ISA(p) models and ISA(p0) hypotheses
with skew p0 = p when m increases.
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Figure 16: Non-null distributions of S0 and T0 for some ISA(p) models and ISA(p0) hy-
potheses with flat p0 and different p when m increases.
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Figure 17: Non-null distributions of S0 and T0 for some ISA(p) models and ISA(p0) hy-
potheses with skew p0 and different p when m increases.
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4.4 Test Illustrations for RSM Models

When performing tests of IEA models, multigraphs are known to have multiplicity sequences
that are multinomially distributed, which implies that the distributions of the test statis-
tics S0 and T0 are asymptotically χ

2-distributed when the correct model is being tested.
However, for RSM models, there is dependence between edges, and the distributions of S0

and T0 are unknown. In this section, we illustrate some of the consequences of using the
previously described tests of simple hypotheses against a false IEA model when the true
model is RSM. Here, both IEAS(d0) and ISA(p0) hypotheses are tested for flat and skew
d0 and p0. The true model is RSM(d) so that only non-null distributions of S0 and T0 are
considered.

We start by testing multigraphs with 4 vertices and 12 edges. The powers of these tests
according to S0 and T0 are presented in Table 5. For IEAS(d0) hypotheses, the diagonal
representing d0 = d is shaded, and for ISA(p0) hypotheses, the diagonal representing
p0 = d/2m is shaded. For these shaded cases, both αS0

and αT0
are much below α = 0.04,

except for the very skew d0 = d = (18, 2, 2, 2) where αS0
is much above α. For the

majority of cases with d0 6= d or p0 6= d/2m both test statistics have good or reasonable
powers, unless d is too close to d0 or 2mp0. To illustrate the fit of the distributions of the
statistics S0 and T0 to that of χ2

9, their cumulative distribution functions for some selected
cases are shown in Figure 18. We see similar trends as those for IEAS models in Figure 8
and ISA models in Figure 13 which generally makes it hard to detect differences between
how the models RSM, IEAS and ISA effect the test statistics.

Four cases are chosen to illustrate adjusted χ
2-approximations to the distributions of

the test statistics. Table 6 shows the expected values and variances for test statistics and
approximations, and the approximations that are not preferred are shaded. Thus we see
that the preferences can vary in all different ways.

Let us now increase the number of edges and consider multigraphs with 3 vertices and
45 edges. The powers of these tests according to S0 and T0 are presented in Table 7 where
the following is noted. For IEAS and ISA hypotheses with d0 = d and p0 = d/2m, the
significance levels of both S0 and T0 are much smaller than α and also equal or almost equal.
There are some cases of powers below α implying that it is difficult to detect hypotheses
about wrong models. For IEAS hypotheses where d0 6= d, and ISA hypotheses where
p0 6= d/2m, the powers are equal or close to one another in the majority of cases. This
is a consequence of similarities between IEAS and ISA models for large m. Other results
concerning the powers in Table 7 are similar to those seen in Table 5. Figure 19 illustrates
the fit of the distributions of S0 and T0 to that of χ2

5 for some different cases with m = 45
and should be compared to Figure 18 which illustrates m = 12. We see strong deviations
from χ

2
5 for both S0 and T0, and for flat d0, the distributions are either to the left of the

χ
2
5-distribution or close to it. This is further illustrated in Figures 20-23 and is in contrast

to the finding for IEAS models in Figure 9-12 and for ISA models in Figures 14-17.
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In Figures 20 to 23, the non-null distribution of S0 and T0 for some RSM(d) models
are illustrated where m increases as multiples of different specified d. Figures 20 and 21
illustrate IEAS hypotheses with flat and skew d0, and Figures 22 and 23 illustrate ISA
hypotheses with flat and skew p0. When d0 = d or p0 = d/2m, the non-null distributions
of both S0 and T0 lie above the asymptotic null distributions. This is consistent with
results shown in Section 5.1. Further for these cases we see that as m increases, these
distributions still lie above the asymptotic null distribution, and a χ

2-distribution with
lower degrees of freedom seem to better approximate these distributions. For cases with
d0 6= d or p0 6= d/2m, the non-null distributions of both statistics move further away
from the asymptotic null distribution as m increases, implying a need to use adjusted χ

2-
distributions for better fit.

Three cases to illustrate the approximations by adjusted χ
2-distributions are given in

Table 8. For all three cases, S
′

0 and T
′

0 are preferred. For the second and third case
with d0 = d, the variances of S0 and T0 are roughly twice their expected values which
are approximately equal to 3. Thus, the adjusted χ

2-distribution for both test statistics
seem to be closer to r − n rather than r − 1 degrees of freedom under RSM. This is also
supported by the expected value of S0 which according to the result in Section 4.1 is
(m− 1)n(n− 1)/(2m− 3) which is about r − n = n(n− 1)/2.

So far in this section we have considered the consequences of replacing IEA models
with RSM models, but have only tested IEA hypotheses. We conclude this section with a
comment about testing RSM hypotheses. A simple RSM(d0) hypothesis has the same Q0 as
the IEAS(d0) hypothesis, and S0 and T0 can not distinguish between these two hypotheses.
Should the model be RSM(d), there is a dependency between edges when they are assigned
to sites, which could be used to distinguish between the two hypotheses. This requires a
test not using S0 or T0, but a test using the full potential of m having as its critical region
the set M(d0) consisting of all outcomes m that are not compatible with d0. This test
has zero probability of false rejection of RSM(d0), and its power can be determined as the
sum of the probabilities according to RSM(d) of the outcomes in the critical region. Shafie
(2012) gives the RSM(d) probabilities and specifies outcomes of m compatible with a fixed
degree sequence. We will not pursue details of this test further here.
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Table 5: Power according to S0 (upper value) and T0 (value below) when model is RSM(d)
and hypothesis is IEAS(d0) or ISA(p0) for n = 4 and m = 12. α = 0.04.

d

(18, 2, 2, 2) (16, 3, 3, 2) (13, 5, 4, 2) (8, 8, 4, 4) (7, 7, 7, 3) (7, 6, 6, 5) (6, 6, 6, 6)
d0

(18, 2, 2, 2) 0.14 0.33 0.74 1.00 1.00 1.00 1.00
0.00 0.00 0.08 1.00 1.00 1.00 1.00

(16, 3, 3, 2) 0.05 0.05 0.15 1.00 1.00 1.00 1.00
0.00 0.00 0.01 0.79 0.96 0.95 1.00

(13, 5, 4, 2) 0.05 0.04 0.05 0.47 0.49 0.79 0.99
0.02 0.00 0.00 0.10 0.14 0.28 0.70

(8, 8, 4, 4) 1.00 0.57 0.07 0.01 0.07 0.09 0.15
1.00 0.36 0.03 0.01 0.03 0.03 0.04

(7, 7, 7, 3) 1.00 1.00 0.15 0.02 0.00 0.05 0.12
1.00 1.00 0.07 0.02 0.01 0.02 0.04

(7, 6, 6, 5) 1.00 1.00 0.15 0.01 0.01 0.00 0.01
1.00 1.00 0.14 0.02 0.01 0.01 0.01

(6, 6, 6, 6) 1.00 1.00 0.52 0.02 0.02 0.01 0.01
1.00 1.00 0.37 0.02 0.02 0.01 0.01

p0

(

3

4
, 1

12
, 1

12
, 1

12

)

0.02 0.00 0.79 1.00 1.00 1.00 1.00
0.00 0.00 0.04 1.00 1.00 1.00 1.00

(

2

3
, 1

8
, 1

8
, 1

12

)

0.01 0.01 0.15 0.98 1.00 1.00 1.00
0.00 0.00 0.00 0.77 0.92 0.95 0.99

(

13

24
, 5

24
, 1

6
, 1

12

)

0.02 0.02 0.01 0.42 0.43 0.78 0.99
0.02 0.02 0.00 0.09 0.07 0.27 0.76

(

1

3
, 1

3
, 1

6
, 1

6

)

1.00 1.00 0.02 0.00 0.03 0.04 0.08
1.00 1.00 0.03 0.00 0.02 0.03 0.04

(

7

24
, 7

24
, 7

24
, 1

8

)

1.00 0.83 0.11 0.02 0.00 0.05 0.12
1.00 1.00 0.06 0.02 0.01 0.02 0.04

(

7

24
, 1

4
, 1

4
, 5

24

)

1.00 0.83 0.11 0.01 0.01 0.00 0.01
1.00 0.84 0.08 0.02 0.01 0.00 0.01

(

1

4
, 1

4
, 1

4
, 1

4

)

1.00 1.00 0.52 0.02 0.01 0.00 0.00
1.00 1.00 0.34 0.02 0.02 0.01 0.01
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Table 6: Moments of S0, S
′

0, S
′′

0 , T0, T
′

0 and T
′′

0 for some RSM(d) models and IEAS(d0) or
ISA(d0/2m) hypotheses with n = 4 and m = 12. The unshaded columns correspond to the
best approximations to the test statistics.

Case 1: ISA d0 = d = (7, 6, 6, 5)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 6.18 6.18 6.18 7.90 7.90 7.90
Variance 8.70 12.71 8.47 11.32 17.83 13.87

Case 2: IEAS d0 = d = (16, 3, 3, 2)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 6.29 6.29 6.29 5.08 5.08 5.08
Variance 32.41 13.17 8.78 7.25 10.32 5.73

Case 3: ISA d0 = (13, 5, 4, 2), d = (8, 8, 4, 4)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 16.98 16.98 16.98 12.71 12.71 12.71
Variance 39.45 36.02 64.04 10.84 26.93 35.91

Case 4: IEAS d0 = (7, 7, 7, 3), d = (6, 6, 6, 6)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 13.28 13.28 13.28 10.85 10.85 10.85
Variance 47.97 27.12 39.17 11.73 23.53 26.14
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Table 7: Power according to S0 (upper value) and T0 (value below) when model is RSM(d)
and hypothesis is IEAS(d0) or ISA(p0) for n = 3 and m = 45. α = 0.05.

d

(70, 10, 10) (65, 15, 10) (50, 20, 20) (45, 35, 10) (40, 30, 20) (35, 30, 25) (30, 30, 30)
d0

(70, 10, 10) 0.01 0.13 1.00 1.00 1.00 1.00 1.00
0.01 0.03 1.00 1.00 1.00 1.00 1.00

(65, 15, 10) 0.01 0.01 1.00 1.00 1.00 1.00 1.00
0.01 0.01 1.00 1.00 1.00 1.00 1.00

(50, 20, 20) 1.00 0.85 0.01 1.00 0.37 0.97 1.00
1.00 1.00 0.02 1.00 0.23 0.90 1.00

(45, 35, 10) 1.00 1.00 1.00 0.01 1.00 1.00 1.00
1.00 1.00 1.00 0.01 0.56 1.00 1.00

(40, 30, 20) 1.00 1.00 0.12 0.13 0.01 0.04 0.42
1.00 1.00 0.24 0.32 0.01 0.03 0.28

(35, 30, 25) 1.00 1.00 0.92 1.00 0.02 0.01 0.03
1.00 1.00 0.90 1.00 0.03 0.01 0.03

(30, 30, 30) 1.00 1.00 1.00 1.00 0.23 0.02 0.01
1.00 1.00 1.00 1.00 0.25 0.03 0.01

p0

(

7

9
, 1

9
, 1

9

)

0.01 0.12 1.00 1.00 1.00 1.00 1.00
0.01 0.03 1.00 1.00 1.00 1.00 1.00

(

13

18
, 1

6
, 1

9

)

0.01 0.01 1.00 1.00 1.00 1.00 1.00
0.01 0.01 1.00 1.00 1.00 1.00 1.00

(

5

9
, 2

9
, 2

9

)

1.00 0.85 0.01 1.00 0.34 0.91 1.00
1.00 1.00 0.02 1.00 0.21 0.84 1.00

(

1

2
, 7

18
, 1

9

)

1.00 1.00 1.00 0.01 1.00 1.00 1.00
1.00 1.00 1.00 0.01 0.54 1.00 1.00

(

4

9
, 1

3
, 2

9

)

1.00 1.00 0.11 0.13 0.01 0.04 0.39
1.00 1.00 0.24 0.32 0.01 0.03 0.28

(

7

18
, 1

3
, 5

18

)

1.00 1.00 0.90 1.00 0.02 0.01 0.03
1.00 1.00 0.90 1.00 0.03 0.01 0.02

(

1

3
, 1

3
, 1

3

)

1.00 1.00 1.00 1.00 0.19 0.02 0.01
1.00 1.00 1.00 1.00 0.24 0.03 0.01
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Table 8: Moments of S0, S
′

0, S
′′

0 , T0, T
′

0 and T
′′

0 for some RSM(d) models and IEAS(d0) or
ISA(d0/2m) hypotheses with n = 3 and m = 45. The unshaded columns correspond to the
best approximations to the test statistics.

Case 1: IEAS d0 = (70, 10, 10),d = (65, 15, 10)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 7.43 7.43 7.43 6.05 6.05 6.05
Variance 15.96 15.77 22.07 5.28 12.19 14.63

Case 2: ISA d0 = d = (50, 20, 20)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 3.01 3.01 3.01 3.32 3.32 3.32
Variance 5.50 6.05 3.63 7.45 7.35 4.41

Case 3: IEAS d0 = d = (30, 30, 30)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 3.03 3.03 3.03 3.14 3.14 3.14
Variance 5.83 6.14 3.68 6.66 6.57 3.94
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Figure 18: Distributions of S0, T0 and χ
2
9 for some RSM(d) models and IEAS(d0) or

ISA(d0/2m) hypotheses with n = 4 and m = 12.

29



0 5 10 15
0

0.2

0.4

0.6

0.8

1

s
 

 
IEAS d0 = d = (30, 30, 30)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

t
 

 

P (S0 < s)
P (χ2

5 < s)
P (T0 < t)
P (χ2

5 < t)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

s
 

 
ISA d0 = d = (70, 10, 10)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

t
 

 

P (S0 < s)
P (χ2

5 < s)
P (T0 < t)
P (χ2

5 < t)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

s
 

 
IEAS d0 = (40, 30, 20),d = (35, 30, 25)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

t
 

 

P (S0 < s)
P (χ2

5 < s)
P (T0 < t)
P (χ2

5 < t)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

s
 

 
ISA d0 = (40, 30, 20),d = (50, 20, 20)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

t
 

 

P (S0 < s)
P (χ2

5 < s)
P (T0 < t)
P (χ2

5 < t)

Figure 19: Distributions of S0, T0 and χ
2
5 for some RSM(d) models and IEAS(d0) or

ISA(d0/2m) hypotheses with n = 3 and m = 45.
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m = 16,d0 = (8, 8, 8, 8)
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m = 8,d0 = (4, 4, 4, 4)
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Figure 20: Non-null distributions of S0 and T0 for some RSM(d) models and IEAS(d0)
hypotheses with flat d0 and different d when m increases.
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Figure 21: Non-null distributions of S0 and T0 for some RSM(d) models and IEAS(d0)
hypotheses with skew d0 and different d when m increases.
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Figure 22: Non-null distributions of S0 and T0 for some RSM(d) models and ISA(p0)
hypotheses with flat p0 and different d when m increases.
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Figure 23: Non-null distributions of S0 and T0 for some RSM(d) models and ISA(p0)
hypotheses with skew p0 and different d when m increases.
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5 Statisticial Tests of a Composite Multigraph Hypothesis

5.1 Test Statistics

The composite multigraph hypothesis might be ISA for unknown p or IEAS for unknown d.
The parameters have to be estimated from data m. These estimates are denoted p̂ = p̂(m)
and d̂ = d̂(m), and they are related according to

p̂ =
d̂

2m
,

where

d̂i =
n
∑

j=1

(mij +mji) = mi· +m·i for i = 1, . . . , n ,

and mij = 0 for i > j. Thus, we have estimated sequences Q̂ = (Q̂ij : (i, j) ∈ R) in the two
cases with composite ISA and IEAS hypotheses. Note that for ISA

Q̂ij =

{

p̂
2
i for i = j

2p̂ip̂j for i < j ,

and for IEAS

Q̂ij =

{

(

d̂i
2

)

/

(

2m
2

)

for i = j

d̂id̂j/
(

2m
2

)

for i < j .

The Pearson goodness-of-fit and divergence statistics are here given as

Ŝ =
∑∑

i≤j

(mij −mQ̂ij)
2

mQ̂ij

=
∑∑

i≤j

m
2
ij

mQ̂ij

−m ,

and
D̂ =

∑∑

i≤j

mij

m
log

mij

mQ̂ij

.

Here, Ŝ and

T̂ =
2m

log e
D̂

are asymptotically χ
2
(n
2
)
-distributed when the correct model is tested. Note that the number

of degrees of freedom here is given as the difference in numbers of estimated free parameters
without and with the hypothesis, i.e. df = (r − 1) − (n − 1) = r − n =

(

n
2

)

. The critical
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regions for these tests are given by values of Ŝ and T̂ above a critical value cv which can be
chosen as

cv = df + 2
√

2df =

(

n

2

)

+

√

8

(

n

2

)

to get a significance level close to 5% given by

α = P (χ2
(n
2
) > cv) .

The power functions P (Ŝ > cv) and P (T̂ > cv) are functions of p or d depending on whether
an ISA(p) or IEAS(d) model is considered. The error probabilities of false rejection and
false acceptance are denoted by α and β indexed by Ŝ and T̂ .

Similar to the test statistic approximations described in Section 4.1, S
′

and S
′′

are
here given by S

∗ for k chosen as the integer part of µ and r − n, respectively. These
approximations can be used as alternative test statistics provided the expected values of Ŝ
and T̂ are known. Formal expressions for the expected values are complicated to obtain due
to that m is involved also via Q̂ that depends on d̂ which is determined by m. However, for
our theoretical investigation we use complete enumerations of all outcomes of m and find
the expected values and variances numerically. Under an RSM(d) model the estimated d̂

is always (for any data m) equal to the d specified in the model which implies that

E(Ŝ) = E(S0) =
(m− 1)n(n− 1)

2m− 3
,

as shown in Section 4.1. The preferences between approximations to the test statistics under
IEA models are determined by comparing variances, as mentioned in Section 4.1.

5.2 Test Illustrations for IEAS Models

Consider composite IEAS hypotheses against IEAS(d) models for multigraphs with 4 ver-
tices and 10 edges. Here, the composite hypotheses include the correct model and the
probabilities of false rejection according to Ŝ and T̂ are given in Table 9. For flat d, both
αŜ and αT̂ are close or equal to α = 0.04 and for skew d, αŜ remains close or equal to α

while αT̂ is below. If the composite ISA hypothesis is instead tested against the IEAS(d)

model, the powers of Ŝ and T̂ are almost equal to the values of αŜ and αT̂ in Table 9. Thus,
both statistics have very poor powers of detecting differences between composite ISA and
IEAS hypotheses. Figure 24 illustrates the fit of the distributions of Ŝ and T̂ to that of χ2

6.
For skew d there are larger deviations from χ

2
6 for both Ŝ and T̂ than there are for flat d.

Figures 25 and 26 shows the null and non-null distributions of Ŝ and T̂ for some IEAS(d)
models with flat and skew d when m increases as multiples of the specified d. The null
distributions correspond to composite IEAS hypotheses while non-null distributions corre-
spond to composite ISA hypotheses. The convergence of the null distributions for flat d is
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rapid towards the asymptotic distribution, especially for Ŝ. However, the convergence of the
null distributions for skew d is slower for both statistics. The non-null distributions of both
statistics also seem to converge to the asymptotic null distributions. Thus, for small and
large m, it is difficult to detect differences between composite ISA and IEAS hypotheses.

The expected values and variances of Ŝ and T̂ , and of their approximations Ŝ
′

, Ŝ
′′

, T̂
′

and T̂
′′

are presented in Table 10, where the versions that are not preferred are shaded. For
flat d, the variances of Ŝ are roughly twice their expected values, which are approximately
equal to 6. This indicates a good fit to the χ2

6-distribution in terms of the first two moments.
This is also noted by Ŝ

′′

being preferred to Ŝ
′

. Further, for flat d, Ŝ
′′

and T̂
′

are preferred,
while for the majority of cases with skew d, T̂

′′

and Ŝ
′

are preferred. Two particular cases
are d =(6, 6, 6, 2) and d =(6, 5, 5, 4) where the variances of the approximations are equal
so that any one of them can be preferred.

Table 9: Probabilities of false rejection according to Ŝ and T̂ when model is IEAS(d) and
a composite IEAS hypothesis is tested for n = 4 and m = 10. α = 0.04.

d (14, 2, 2, 2) (12, 3, 3, 2) (9, 7, 2, 2) (8, 8, 2, 2) (6, 6, 6, 2) (6, 5, 5, 4) (5, 5, 5, 5)

Ŝ 0.04 0.04 0.03 0.03 0.02 0.03 0.03

T̂ 0.00 0.01 0.01 0.01 0.03 0.04 0.04

Table 10: Moments of Ŝ, Ŝ
′

, Ŝ
′′

, T̂ , T̂
′

and T̂
′′

when model is IEAS(d) and a composite
IEAS hypothesis is tested for n = 4 and m = 10. The unshaded rows correspond to the
best approximation to the test statistics.

d (14, 2, 2, 2) (12, 3, 3, 2) (9, 7, 2, 2) (8, 8, 2, 2) (6, 6, 6, 2) (6, 5, 5, 4) (5, 5, 5, 5)

Ŝ
Mean 3.69 4.59 4.56 4.57 5.31 5.88 5.94

Variance 18.50 16.12 12.79 12.71 10.57 11.32 11.08

Ŝ
′ Mean 3.69 4.59 4.56 4.57 5.31 5.88 5.94

Variance 9.09 10.52 10.39 10.42 11.29 13.85 14.11

Ŝ
′′ Mean 3.69 4.59 4.56 4.57 5.31 5.88 5.94

Variance 4.54 7.02 6.92 6.95 9.41 11.54 11.76

T̂
Mean 3.30 4.57 5.04 5.07 6.23 6.96 7.07

Variance 6.71 7.43 8.29 8.43 8.97 9.20 9.22

T̂
′ Mean 3.30 4.57 5.04 5.07 6.23 6.96 7.07

Variance 7.26 10.45 10.15 10.29 12.95 16.16 14.28

T̂
′′ Mean 3.30 4.57 5.04 5.07 6.23 6.96 7.07

Variance 3.63 6.96 8.46 8.57 12.95 16.16 16.66
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P (Ŝ < s)
P (χ2

6 < s)
P (T̂ < t)
P (χ2

6 < t)

Figure 24: Distributions of Ŝ, T̂ and χ
2
6 for some IEAS(d) models and composite IEAS

hypothesis with n = 4 and m = 10.
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P (Ŝ < s)
P (χ2

6 < s)
P (T̂ < t)
P (χ2

6 < t)

m = 8,d = (4, 4, 4, 4)

m = 4,d = (2, 2, 2, 2)

m = 8,d = (4, 4, 4, 4)

m = 8,d = (4, 4, 4, 4)

m = 4,d = (2, 2, 2, 2)

m = 4,d = (2, 2, 2, 2) m = 4,d = (2, 2, 2, 2)

m = 8,d = (4, 4, 4, 4)

Figure 25: Null and non-null distributions of Ŝ and T̂ for some IEAS(d) models with flat
d and composite IEAS and ISA hypotheses when m increases.
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Figure 26: Null and non-null distributions of Ŝ and T̂ for some IEAS(d) models with skew
d and composite IEAS and ISA hypotheses when m increases.
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5.3 Test Illustrations for ISA Models

We now turn to composite ISA hypotheses against ISA(p) models, and consider tests of
multigraphs with 4 vertices and 10 edges. The probabilities of false rejection according to
Ŝ and T̂ are given in Table 11 where similar results are seen as for IEAS models in Table
9. For skew p, αT̂ is much below α = 0.04, while αŜ is always close to α. If a composite
hypothesis IEAS instead of composite ISA is tested against the ISA(p) model, the powers
of Ŝ and T̂ are approximately equal to αŜ and αT̂ given in Table 11. As noted before, these
poor powers are due to the resemblances between ISA and IEAS models.

Some selected cases from Table 11 are illustrated in Figure 27 where the cumulative
distribution functions of Ŝ and T̂ are given. We see that we have fairly good fit between
the distributions of both statistics and that of χ2

6, except for the very skew p =(7/10, 1/10,
1/10, 1/10).

In Figures 28 and 29 we illustrate the effect of increasing m on the null and non-null
distributions of Ŝ and T̂ for some ISA(p) models with flat and skew p. Here, the resemblance
between IEAS and ISA models gives similar results as those for composite hypotheses against
IEAS models shown in Section 5.2. The convergence of the null distributions is faster for
flat p than for skew p, and the detection of a composite hypothesis not including the correct
model is more difficult as m is increased.

The expected values and variances of all the versions of the test statistics are presented in
Table 12 where the unshaded rows correspond to the best approximations. For the majority
of cases Ŝ

′′

and T̂
′′

are preferred, except for very skew p where Ŝ
′

and T̂
′

are preferred.

Table 11: Probabilities of false rejection according to Ŝ and T̂ when model is ISA(p) and a
composite ISA hypothesis is tested for n = 4 and m = 10. α = 0.04.

p
(

7

10
, 1

10
, 1

10
, 1

10

) (

3

5
, 1

5
, 1

10
, 1

10

) (

1

2
, 1

6
, 1

6
, 1

6

) (

4

9
, 1

3
, 1

9
, 1

9

) (

3

8
, 3

8
, 1

8
, 1

8

) (

1

4
, 1

4
, 1

4
, 1

4

)

Ŝ 0.03 0.03 0.03 0.03 0.03 0.03

T̂ 0.01 0.01 0.02 0.02 0.02 0.05
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Table 12: Moments of Ŝ, Ŝ
′

, Ŝ
′′

, T̂ , T̂
′

and T̂
′′

when model is ISA(p) and a composite ISA
hypothesis is tested for n = 4 and m = 10. The unshaded rows correspond to the best
approximation to the test statistics.

p
(

7

10
, 1

10
, 1

10
, 1

10

) (

3

5
, 1

5
, 1

10
, 1

10

) (

1

2
, 1

6
, 1

6
, 1

6

) (

4

9
, 1

3
, 1

9
, 1

9

) (

3

8
, 3

8
, 1

8
, 1

8

) (

1

4
, 1

4
, 1

4
, 1

4

)

Ŝ
Mean 4.00 4.59 5.42 4.99 5.22 5.96

Variance 15.50 11.92 9.81 10.19 9.28 8.41

Ŝ
′ Mean 4.00 4.59 5.42 4.99 5.22 5.96

Variance 8.01 10.52 11.73 12.43 10.91 14.23

Ŝ
′′ Mean 4.00 4.59 5.42 4.99 5.22 5.96

Variance 5.34 7.01 9.78 8.29 9.09 11.86

T̂
Mean 3.70 4.73 6.01 5.56 5.93 7.24

Variance 7.17 7.48 8.15 8.72 9.00 9.21

T̂
′ Mean 3.70 4.73 6.01 5.56 5.93 7.24

Variance 9.14 11.18 12.05 12.38 14.06 14.99

T̂
′′ Mean 3.70 4.73 6.01 5.56 5.93 7.24

Variance 4.57 7.45 12.05 10.32 11.72 17.49
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P (Ŝ < s)
P (χ2

6 < s)
P (T̂ < t)
P (χ2

6 < t)

Figure 27: Distributions of Ŝ, T̂ and χ
2
6 for some ISA(p) models and composite ISA hy-

pothesis with n = 4 and m = 10.
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Figure 28: Null and non-null distributions of Ŝ and T̂ for some ISA(p) models with flat
p =(1/4, 1/4, 1/4, 1/4) and composite ISA and IEAS hypotheses when m increases.
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Figure 29: Null and non-null distributions of Ŝ and T̂ for some ISA(p) models with skew
p =(5/8, 1/8, 1/8, 1/8) and composite ISA and IEAS hypotheses when m increases.
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5.4 Test Illustrations for RSM Models

In this section we illustrate some of the consequences of using previously described tests
of composite hypotheses against a false IEA model when the true model is RSM. Here,
both IEAS and ISA hypotheses are tested against RSM(d) models. We start by considering
multigraphs with 4 vertices and 12 edges. The poor powers according to Ŝ and T̂ of
rejecting IEAS and ISA when RSM is true are presented in Table 13. To illustrate the fit
of the distributions of the statistics Ŝ and T̂ to that of χ2

6, their cumulative distribution
functions for some selected cases are shown in Figure 30. For all cases, there is reasonably
good fit to χ

2
6 for this rather small m.

The expected values and variances of all the versions of the test statistics are presented
in Table 14. For the majority of cases, the variances of Ŝ are roughly twice their expected
values which are equal to 6. This indicates a good fit to the χ

2
6-distribution in terms of the

first two moments. Note that E(Ŝ) under IEAS hypotheses are not dependent on the values
in the degree sequence, as mentioned in Section 5.1. For very skew d, T̂

′′

is preferred for
almost all cases and for the rest of the skew cases and for flat cases, T̂

′

is preferred.
The poor powers of rejecting IEAS and ISA when RSM is true for multigraphs with

3 vertices and 45 edges are shown in Table 15. We see that αŜ is close to α = 0.04 for

all cases shown, while T̂ is equal, less or greater than α for both skew and flat d. The fit
of the non-null distributions of Ŝ and T̂ to that of χ2

3 for some selected cases are shown
in Figure 31 where we for all cases illustrated see a good fit. The expected values and
variances of all the versions of the test statistics are presented in Table 16. For all cases
with IEAS hypotheses, and almost all cases with ISA hypotheses, we note a good fit to the
χ
2
3-distribution since the variances of both test statistics are roughly twice their expected

values which are equal to 3. This indicates that the approximations are mostly unnecessary
for large m.

In Figures 32 and 33 the effects of increasing m on the non-null distributions of Ŝ and
T̂ for some RSM(d) models with flat and skew d are illustrated. For all cases illustrated we
see that these distributions are very close to the asymptotic null distribution. Further, the
effect from increasing m on the non-null distributions is small. Thus it can be concluded
that no matter the size of m, it is difficult to detect a false composite hypothesis under an
RSM model, just as it is difficult to detect a false composite hypothesis under IEA models
as demonstrated in Figures 25-26 for IEAS models, and in Figures 28-29 for ISA models.
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Table 13: Power according to Ŝ and T̂ when model is RSM(d) and a composite IEAS or
ISA hypothesis is tested for n = 4 and m = 12. α = 0.04.

d (18, 2, 2, 2) (16, 3, 3, 2) (13, 5, 4, 2) (8, 8, 4, 4) (7, 7, 7, 3) (7, 6, 6, 5) (6, 6, 6, 6)

IEAS
Ŝ 0.14 0.09 0.06 0.03 0.04 0.04 0.03

T̂ 0.02 0.02 0.03 0.05 0.06 0.08 0.07

ISA
Ŝ 0.04 0.08 0.06 0.03 0.03 0.03 0.02

T̂ 0.02 0.01 0.02 0.06 0.06 0.09 0.06

Table 14: Moments of Ŝ, Ŝ
′

, Ŝ
′′

, T̂ , T̂
′

and T̂
′′

when model is RSM(d) and a composite
IEAS or ISA hypothesis is tested for n = 4 and m = 12. The unshaded rows correspond to
the best approximations to the test statistics.

Composite IEAS hypothesis
d (18, 2, 2, 2) (16, 3, 3, 2) (13, 5, 4, 2) (8, 8, 4, 4) (7, 7, 7, 3) (7, 6, 6, 5) (6, 6, 6, 6)

Ŝ
Mean 6.29 6.29 6.29 6.29 6.29 6.29 6.29

Variance 66.26 32.41 26.50 10.18 11.83 9.64 9.63

Ŝ
′ Mean 6.29 6.29 6.29 6.29 6.29 6.29 6.29

Variance 13.18 13.17 13.17 13.17 13.17 13.17 13.17

Ŝ
′′ Mean 6.29 6.29 6.29 6.29 6.29 6.29 6.29

Variance 13.18 13.17 13.17 13.17 13.17 13.17 13.17

T̂
Mean 3.80 5.08 6.26 7.34 7.39 7.83 7.90

Variance 9.06 7.25 7.57 11.43 11.77 11.54 11.56

T̂
′ Mean 3.80 5.08 6.26 7.34 7.39 7.83 7.90

Variance 9.63 10.32 13.04 15.40 15.62 17.51 17.82

T̂
′′ Mean 3.80 5.08 6.26 7.34 7.39 7.83 7.90

Variance 4.81 8.60 13.04 17.97 18.23 20.43 20.80

Composite ISA hypothesis
d (18, 2, 2, 2) (16, 3, 3, 2) (13, 5, 4, 2) (8, 8, 4, 4) (7, 7, 7, 3) (7, 6, 6, 5) (6, 6, 6, 6)

Ŝ
Mean 5.12 5.52 5.76 6.09 6.07 6.18 6.19

Variance 23.58 13.19 10.87 8.41 9.07 8.70 8.78

Ŝ
′ Mean 5.12 5.52 5.76 6.09 6.07 6.18 6.19

Variance 10.50 12.17 13.26 12.36 12.29 12.71 12.76

Ŝ
′′ Mean 5.12 5.52 5.76 6.09 6.07 6.18 6.19

Variance 8.75 10.14 11.05 12.36 12.29 12.71 12.76

T̂
Mean 3.86 5.16 6.33 7.42 7.46 7.90 7.98

Variance 6.78 5.36 6.40 10.83 11.44 11.33 11.37

T̂
′ Mean 3.86 5.16 6.33 7.42 7.46 7.90 7.98

Variance 9.92 10.66 13.34 15.73 15.91 17.82 18.18

T̂
′′ Mean 3.86 5.16 6.33 7.42 7.46 7.90 7.98

Variance 4.96 8.88 13.34 18.35 18.56 20.79 21.21
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Table 15: Power according to Ŝ and T̂ when model is RSM(d) and a composite IEAS or
ISA hypothesis is tested for n = 3 and m = 45. α = 0.04.

d (70, 10, 10) (65, 15, 10) (50, 20, 20) (45, 35, 10) (40, 30, 20) (35, 30, 25) (30, 30, 30)

IEAS
Ŝ 0.04 0.04 0.04 0.04 0.05 0.05 0.05

T̂ 0.02 0.04 0.07 0.05 0.06 0.06 0.07

ISA
Ŝ 0.03 0.04 0.04 0.04 0.04 0.05 0.05

T̂ 0.02 0.04 0.06 0.05 0.06 0.06 0.06

Table 16: Moments of Ŝ, Ŝ
′

, Ŝ
′′

, T̂ , T̂
′

and T̂
′′

when model is RSM(d) and a composite
IEAS or ISA hypothesis is tested for n = 3 and m = 45. The unshaded rows correspond to
the best approximations to the test statistics.

Composite IEAS hypothesis
d (70, 10, 10) (65, 15, 10) (50, 20, 20) (45, 35, 10) (40, 30, 20) (35, 30, 25) (30, 30, 30)

Ŝ
Mean 3.03 3.03 3.03 3.03 3.03 3.03 3.03

Variance 6.62 6.12 5.71 6.11 5.78 5.81 5.83

Ŝ
′ Mean 3.03 3.03 3.03 3.03 3.03 3.03 3.03

Variance 6.14 6.14 6.14 6.14 6.14 6.14 6.14

Ŝ
′′ Mean 3.03 3.03 3.03 3.03 3.03 3.03 3.03

Variance 6.14 6.14 6.14 6.14 6.14 6.14 6.14

T̂
Mean 3.43 3.48 3.31 3.22 3.21 3.15 3.14

Variance 3.66 5.28 7.35 5.48 6.94 6.77 6.66

T̂
′ Mean 3.43 3.48 3.31 3.22 3.21 3.15 3.14

Variance 7.82 8.09 7.30 6.92 6.88 6.63 6.57

T̂
′′ Mean 3.43 3.48 3.31 3.22 3.21 3.15 3.14

Variance 7.82 8.09 7.30 6.92 6.88 6.63 6.57

Composite ISA hypothesis
d (70, 10, 10) (65, 15, 10) (50, 20, 20) (45, 35, 10) (40, 30, 20) (35, 30, 25) (30, 30, 30)

Ŝ
Mean 2.91 2.95 3.01 2.98 3.03 3.03 3.03

Variance 5.55 5.36 5.50 5.60 5.66 5.75 5.78

Ŝ
′ Mean 2.91 2.95 3.01 2.98 3.03 3.03 3.03

Variance 8.49 8.69 6.05 8.88 6.10 6.13 6.14

Ŝ
′′ Mean 2.91 2.95 3.01 2.98 3.03 3.03 3.03

Variance 5.66 5.79 6.05 5.92 6.10 6.13 6.14

T̂
Mean 3.45 3.50 3.32 3.23 3.23 3.17 3.15

Variance 3.47 5.23 7.45 5.42 7.02 6.82 6.73

T̂
′ Mean 3.45 3.50 3.32 3.23 3.23 3.17 3.15

Variance 7.92 8.16 7.35 6.98 6.95 6.71 6.60

T̂
′′ Mean 3.45 3.50 3.32 3.23 3.23 3.17 3.15

Variance 7.92 8.16 7.35 6.98 6.95 6.71 6.60
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Figure 30: Distributions of Ŝ, T̂ and χ
2
6 for some RSM(d) models and composite IEAS or

ISA hypotheses with n = 4 and m = 12.
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Figure 31: Distributions of Ŝ, T̂ and χ
2
6 for some RSM(d) models and composite IEAS or

ISA hypotheses with n = 3 and m = 45.

46



0 5 10 15
0

0.2

0.4

0.6

0.8

1

s
 

 
Composite IEAS hypothesis

0 5 10 15
0

0.2

0.4

0.6

0.8

1

t
 

 

0 5 10 15
0

0.2

0.4

0.6

0.8

1

s
 

 
Composite ISA hypothesis

0 5 10 15
0

0.2

0.4

0.6

0.8

1

t
 

 

P (χ2
6 < s)
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Figure 32: Non-null distributions of Ŝ and T̂ for some RSM(d) models with flat d and
composite IEAS and ISA hypotheses when m increases.
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Figure 33: Non-null distributions of Ŝ and T̂ for some RSM(d) models with skew d and
composite IEAS and ISA hypotheses when m increases.
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Some Multigraph Algorithms

Termeh Shafie

Abstract

Several algorithms for generating and analyzing multigraphs under two different multi-
graph models are presented including the following: to find distributions of complexity
measures in different random multigraphs, to analyze the local and global structure of
multigraphs under different multigraph models using information theoretic tools based
on entropy, and to test simple or composite hypotheses concerning random multigraphs.

Keywords: multigraph, algorithm, graph enumeration, complexity, multiplicity, en-
tropy, information divergence, goodness-of-fit.

Introduction

There are many graph theoretic algorithms available in the literature. In this article, multi-
graph algorithms used in the articles by Frank and Shafie (2012), Shafie (2012a) and Shafie
(2012b) are presented. Algorithms are given for generating multigraphs under two different
multigraph models. The first model is random stub matching (RSM) where the edges are
formed by randomly coupling pairs of stubs according to a fixed stub multiplicity or degree
sequence. Thus, edge assignments to vertex pair sites are dependent. The second multi-
graph model is obtained by independent edge assignments (IEA) according to a common
probability distribution over the sites. Two different methods for obtaining an approxi-
mate IEA model from an RSM model are also considered. The first method is obtained by
assuming that the stubs are randomly generated and independently assigned to vertices,
called independent stub assignments (ISA) and the second method of obtaining an approxi-
mate IEA model is to ignore the dependency between edges in the RSM model and assume
independent edge assignments of stubs (IEAS).

Algorithms are also given for analyzing and testing different multigraph models using
information theoretic tools based on entropy. In particular, algorithms are given for using
the local and global distributions under RSM and IEA to calculate moments and entropies,

Department of Statistics, Stockholm University, S-106 91 Stockholm, termeh.shafie@stat.su.se
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and for comparisons between distributions by information divergence. Further, special
algorithms are developed for analyzing the complexity of multigraphs which is defined and
quantified by the distribution of edge multiplicities.

All algorithms are developed by me and presented in a brief algorithmic style. They
have been used for research work presented in the references, and details about concepts
and notations used in the algorithms can be found there. Note that there might be more
efficient alternatives available in the computer science literature. Such efficiency might be
required in order to apply the methods to large multigraphs or to extensive calculations with
many multigraphs. Since this has not been needed during the methodological development,
no attempts have been made to get optimal algorithms.

List of Algorithms

1 Generating non-decreasing edge sequences for multigraphs with fixed number
of vertices and edges 3

2 Complexity of multigraphs with fixed number of vertices and edges 4
3 Generating non-decreasing permutations of a stub multiplicity sequence 4
4 Complexity distribution and multigraph distribution for multigraphs under

RSM 5
5 Entropies of trivariate edge multiplicity distributions under RSM and IEA 6
6 Entropies and moments of marginal loop distributions under RSM and IEA 7
7 Entropies and moments of marginal non-loop distributions under RSM and IEA 8
8 Information divergence between trivariate edge multiplicity distributions un-

der RSM and IEA 9
9 Information divergence between marginal loop multiplicity distributions under

RSM and IEA 9
10 Information divergence between marginal non-loop multiplicity distributions

under RSM and IEA 9
11 Entropies of and information divergence between distributions of multigraphs

under RSM and IEA 10
12 Entropy approximations of distributions of multigraphs under RSM 11
13 Approximations of the probability that an RSM multigraph is simple 12
14 Distribution of the multiplicity sequence under an RSM, IEAS or ISA model 13
15 Statistical tests of a simple IEA hypothesis 14
16 Statistical tests of a composite IEAS hypothesis 15
17 Statistical tests of a composite ISA hypothesis 16
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Algorithm 1: Generating non-decreasing edge sequences for multigraphs with fixed
number of vertices and edges

Input: Number of vertices n and number of edges m
Output: A list Z with all possible non-decreasing edge sequences

1 r ←
(

n+1

2

)

2 t← 1
3 for i← 1 to m do

4 e(t, i)← 1

5 k ← m
6 while k > 0 do

7 while e(t, k) < r do

8 t← t+ 1
9 for i← 1 to m do

10 if i < k then

11 e(t, i)← e(t− 1, i)
12 else if i ≥ k and e(t, i) + 1 ≤ r then

13 e(t, i)← e(t− 1, k) + 1

14 k ← m

15 if e(t, k) = r then

16 k ← k − 1

17 Z← e
18 for i← 1 to n do

19 for j ← 1 to n do

20 if i ≤ j then

21 A(i, j) = 1
22 else

23 A(i, j) = 0

24 foreach row in Z do

25 foreach column c← 1 to m do

26 for i← 1 to n do

27 for j ← 1 to n do

28 if A(i, j) > 0 then

29 a← row index i
30 b← column index j
31 recode c← (a, b)

32 return Z

3



Algorithm 2: Complexity of multigraphs with fixed number of vertices and edges

Input: Number of vertices n and number of edges m, edge loops allowed or forbidden

Output: Properties of multigraphs including complexity sequences r = (r0, . . . , rm) and summary
complexity measure t for each possible non-decreasing edge sequence

1 Call Algorithm 1 for e and Z

2 r ←
(n+1

2

)

3 foreach row i in Z do

4 for j ← 1 to r do

5 Multiplicity sequence m(i, j)← frequency of e(i) = j

6 for j ← 0 to m do

7 Complexity sequence r(i, j + 1)← frequency of m(i) = j

8 M(i)← upper triangular matrix containing elements of m(i)
9 Number of edge loops m1(i)← sum over all diagonal elements M(i)

10 if m1(i) > 0 then

11 Im1
← 1

12 if forbidden then

13 Remove all rows in Z where Im1
= 1

14 Repeat steps 3-7

15 foreach row i in Z do

16 mFac(i)← product over the factorial of each element in m(i)
17 Complexity summary measure t(i)← m1(i) + log

2
mFac(i)

18 for u← 1 to n do

19 Degree sequence d(i)← frequency of Z(i) = u

20 return List with columns containing Z, d, m, m1, r, t

Algorithm 3:Generating non-decreasing permutations of a stub multiplicity sequence

Input: Degree or stub multiplicity sequence d = (d1, d2, . . . , dn)
Output: A list S with all non-decreasing permutations of a stub sequence

1 Number of vertices n← number of columns in d

2 Number of edges m← half of the sum of all element values in d

3 t← 1

4 s(t)← [1d1 2d2 · · · ndn ]
5 k ← m− 1
6 while k > 0 do

7 Wk(t)← [1d1(t,k) · · ·ndn(t,k)], an ordered sequence of vertices in the edges (ek(t), . . . , em(t))
8 Try to re-order Wk(t) as a non-decreasing sequence of edges (fk(t), . . . , fm(t)) above ek(t) so that

fk(t)← ek(t) + 1 ≤ fk+1(t) ≤ · · · ≤ fm(t), where ek(t) + 1 means that its second vertex is increased by 1
9 if re-order possible then

10 s(t+ 1)← [e1(t), . . . , ek−1(t), fk(t), . . . , fm(t)]
11 t← t+ 1

12 else

13 k ← k − 1

14 S← s

15 return S
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Algorithm 4: Complexity distribution and multigraph distribution for multigraphs
under RSM

Input: Degree or stub multiplicity sequence d = (d1, d2, . . . , dn)
Output: Lists including complexity distributions Pt and multigraph distributions PZ

1 Number of vertices n← number of columns in d

2 Number of edges m← half of the sum of all element values in d

3 Call Algorithm 3 for S← list of all permutations of the stub sequence
4 Z← S

5 Follow steps 2-19 in Algorithm 2 to find m, m1, r, t
6 foreach row i in Z do

7 if any element in m(i) ≥ 2 then

8 Multiple edge indicator Im2
(i)← 1

9 x← a vector containing elements in m(i) ≥ 2
10 C ← product over the factorial of each element in x

11 else

12 Multiple edge indicator Im2
(i)← 0

13 if Im2
(i) = 1 then

14 Total number of possible shift permutations between edge pairs SPB(i)← m!/C
15 else

16 Total number of possible shift permutations between edge pairs SPB(i)← m!

17 if m1(i) = m then

18 Total number of possible shift permutations within edge pairs SPW (i)← 1
19 else

20 Total number of possible shift permutations within edge pairs SPW (i)← 2m−m1(i)

21 Total number of permutations of each edge sequence KZ(i)← SPB(i) · SPW (i)

22 Total number of multigraphs Kd ← sum over all elements in KZ

23 foreach row i in Z do

24 Probability of multigraph PZ(i)← KZ(i)/Kd

25 tUNI ← unique values of t
26 foreach row i in t do
27 Number of complexity value Kt(i)← frequency of tUNI = t(i)
28 Probability of complexity value Pt(i)← sum over all PZ where tUNI = t(i)

29 return List with columns containing Z, PZ, KZ, m, m1, r and list with columns containing tUNI ,
Kt, Pt
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Algorithm 5: Entropies of trivariate edge multiplicity distributions under RSM and
IEA

Input: Number of edges m, degrees di and dj at vertices i and j
Output: The entropies h, entropy upper bounds Maxh, and entropy approximations Apxh of

P ((mii,mjj ,mij)) = (u, v, w)) under RSM and IEA

1 a← di, b← dj , and c← min(a, b)
2 i← 0
3 for w ← 0 to c do

4 for u← 0 to ⌊(a− w)/2⌋ do
5 for v ← 0 to ⌊(b− w)/2⌋ do
6 if (m− a− b+ u+ v + w) ≥ 0 then

7 i = i+ 1
8 UVW (i)← [u v w]

9 P (i)←
m! a! b! 2

(a+b−2u−2v−w
)(2m−a−b)!

u! v! w!(a−2u−w)! (b−2v−w)! (m−a−b+u+v+w)! (2m)!

10 foreach row i in P do

11 if P (i) > 0 then

12 φ(i)← −P (i) log
2
P (i)

13 else

14 φ(i)← 0

15 Entropy hRSM ← sum over all elements in φ
16 Max entropy MaxhRSM ← log

2
of number of rows in UVW

17 Cov ← covariance matrix of UVW

18 Entropy approximation ApxhRSM ← log
2

(√
2πeCov

)

19 Qaa ←
a(a−1)

2m(2m−1)
, Qbb ←

b(b−1)

2m(2m−1)
, and Qab ←

2ab
2m(2m−1)

20 Qc ← (1−Qaa −Qbb −Qab)
21 multprobs← [Qaa Qbb Qab Qc]
22 U ← 0 to m, V ← 0 to m, and W ← 0 to m
23 Produce three-dimensional coordinate arrays where the output coordinate arrays u, v, and w contain copies

of the grid vectors U , V , and W , respectively
24 x← m− (u+ v + w)
25 X← [u v w x]

26 Remove rows in X that have negative elements and check that there are
(m+3

3

)

rows left

27 for i← 0 to
(m+3

3

)

do

28 B(i+ 1)← the pdf for the multinomial distribution with probabilities multprobs evaluated at each row
X(i+ 1)

29 for i← 0 to
(m+3

3

)

do

30 if B(i) > 0 then

31 φ(i)← −B(i) log
2
B(i)

32 else

33 φ(i)← 0

34 Entropy hIEA ← sum over all elements in φ

35 Max entropy MaxhIEA ← log
2

(m+3

3

)

36 Entropy approximation ApxhIEA ← log2

(

√

(2πem)3QaaQbbQabQc

)

37 return hRSM , MaxhRSM , ApxhRSM , hIEA, MaxhIEA, ApxhIEA
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Algorithm 6: Entropies and moments of marginal loop distributions under RSM and
IEA

Input: Number of edges m
Output: The entropies h and entropy approximations Apxh of P (mii = v) under RSM and IEA,

together with expected values and variances, respectively

1 for i← 2 to 2m do

2 deg(i) = i

3 foreach row i in deg do

4 d = deg(i)
5 for v ← 0 to ⌊d/2⌋ do
6 if (m− d+ v) < 0 then

7 P (i, v + 1)← 0
8 else

9 P (i, v + 1)←
(

m! 2d−2v d! (2m− d)!
)

/ (v! (d− 2v)! (m− d+ v)! 2m!)

10 Q← d(d− 1)/(2m(2m− 1))
11 for v ← 0 to m do

12 B(i, v + 1)← the pdf for the binomial distribution with parameters Q and m evaluated at
point v

13 µ(i)← d(d− 1)/(2(2m− 1))
14 σ2(i)← µ(i)(1− µ(i)/m)
15 ∆(i)← (d(d− 1)(d− 2)(d− 3)) / (4(2m− 1)(2m− 3))−

(

µ(i)2((m− 1)/m)
)

16 V ar ← σ2(i) + ∆(i)

17 foreach row i in P do

18 foreach column j in P do

19 if P (i, j) > 0 then

20 φ(i, j)← −P (i, j) log
2
P (i, j)

21 else

22 φ(i, j)← 0

23 Entropy hRSM (i)← sum over all columns in φ(i)

24 foreach row i in B do

25 foreach column j in B do

26 if B(i, j) > 0 then

27 φ(i, j)← −B(i, j) log
2
B(i, j)

28 else

29 φ(i, j)← 0

30 Entropy hIEA(i)← sum over all columns in φ(i)

31 foreach row i in deg do

32 Entropy approximation RSM ApxhRSM (i)← log
2

(

√

2πeV ar(i)
)

33 Entropy approximation IEA ApxhIEA(i)← log
2

(

√

2πeσ2(i)
)

34 return List with columns containing deg, hRSM , hIEA, ApxhRSM , ApxhIEA, µ, σ
2, ∆, V ar
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Algorithm 7: Entropies and moments of marginal non-loop distributions under RSM
and IEA

Input: Number of edges m
Output: The entropies h and entropy approximations Apxh of P (mij = w) under RSM and IEA,

together with expected values and variances, respectively

1 for i← 2 to m do

2 for j ← i to 2m− i do
3 Each row in deg ← [i j]

4 foreach row i in deg do

5 di ← deg(i, 1)
6 dj ← deg(i, 2)
7 Call Algorithm 5 for P
8 a← di, b← dj and c← min(a, b)
9 for w ← 0 to c do

10 Pw(i, w + 1)← sum over a to ⌊(a− w)/2⌋ and b to ⌊(b− w)/2⌋ in P

11 Q← 2ab/(2m(2m− 1))
12 for w ← 0 to m do

13 Bw(i, w + 1)← the pdf for the binomial distribution with parameters Q and m evaluated at
point w

14 µ(i)← 2ab/(2(2m− 1))
15 σ2(i)← µ(i)(1− µ(i)/m)
16 ∆(i)← (ab(a− 1)(b− 1)) / ((2m− 1)(2m− 3))−

(

µ(i)2((m− 1)/m)
)

17 V ar ← σ2(i) + ∆(i)

18 foreach row i in Pw do

19 foreach column j in Pw do

20 if Pw(i, j) > 0 then

21 φ(i, j)← −Pw(i, j) log2 Pw(i, j)
22 else

23 φ(i, j)← 0

24 Entropy hRSM (i)← sum over all columns in φ(i)

25 foreach row i in Bw do

26 foreach column j in Bw do

27 if Bw(i, j) > 0 then

28 φ(i, j)← −Bw(i, j) log2 Bw(i, j)
29 else

30 φ(i, j)← 0

31 Entropy hIEA(i)← sum over all columns in φ(i)

32 foreach row i in D do

33 Entropy approximation RSM ApxhRSM (i)← log
2

(

√

2πeV ar(i)
)

34 Entropy approximation IEA ApxhIEA(i)← log
2

(

√

2πeσ2(i)
)

35 return List with columns containing deg, hRSM , hIEA, ApxhRSM , ApxhIEA, µ, σ
2, ∆, V ar
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Algorithm 8: Information divergence between trivariate edge multiplicity distribu-
tions under RSM and IEA

Input: Number of edges m, degrees di and dj at vertices i and j
Output: The information divergence D between P ((mii,mjj ,mij)) = (u, v, w)) under RSM and IEA

1 Call Algorithm 5 for UVW , P and multprobs
2 foreach row i in UVW do

3 UVW (i, 4)← (m− UVW (i, 1)− UVW (i, 2)− UVW (i, 3))

4 foreach row i in UVW do

5 B(i)← the pdf for the multinomial distribution with probabilities multprobs evaluated at each row
UVW (i)

6 foreach row i in UVW do

7 Weighted log-likelihood ratio LLR(i)← Puvw(i) log
2
(P (i)/B(i))

8 Divergence D ← sum over all elements in LLR
9 return D

Algorithm 9: Information divergence between marginal loop multiplicity distribu-
tions under RSM and IEA

Input: Number of edges m
Output: The information divergence D between P (mii = v) under RSM and IEA

1 Call Algorithm 6 for deg, P and B
2 foreach row i in P do

3 foreach column j in P do

4 if P (i, j) > 0 then

5 Weighted log-likelihood ratio LLR(j)← P (i, j) log2 (P (i, j)/B(i, j))
6 else

7 LLR(j)← 0

8 Divergence D(i)← sum over all elements LLR(j)

9 return List with columns containing deg, D

Algorithm 10: Information divergence between marginal non-loop multiplicity dis-
tributions under RSM and IEA

Input: Number of edges m
Output: The information divergence D between P (mij = w) under RSM and IEA

1 Call Algorithm 7 for deg, Pw and Bw

2 foreach row i in Pw do

3 foreach column j in Pw do

4 if Pw(i, j) > 0 then

5 Weighted log-likelihood ratio LLR(j)← Pw(i, j) log2 (Pw(i, j)/Bw(i, j))
6 else

7 LLR(j)← 0

8 Divergence D(i)← sum over all elements LLR(j)

9 return List with columns containing deg, D
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Algorithm 11: Entropies of and information divergence between distributions of
multigraphs under RSM and IEA

Input: Degree or stub multiplicity sequence d = (d1, d2, . . . , dn)
Output: The entropies h, entropy upper bounds Maxh, entropy approximation Apxh and

information divergence D of and between the multigraph distributions under RSM and
IEA

1 Number of vertices n← number of columns in d

2 Number of edges m← half of the sum of all element values in d

3 Call Algorithm 4 for m, PZ and Kd

4 foreach row i in PZ do

5 if PZ(i) > 0 then

6 φ(i)← −PZ(i) log2 PZ(i)
7 else

8 φ(i)← 0

9 Entropy hRSM ← sum over all elements in φ
10 Max entropy MaxhRSM ← log

2
Kd

11 CovRSM ← covariance matrix of m

12 Entropy approximation ApxhRSM ← log
2

(

√

det(2πeCovRSM)
)

13 for i← 0 to n do

14 for j ← 0 to n do

15 if i = j then

16 Q(i, j)← (d(i)(d(i)− 1))/(2m(2m− 1))
17 else if i < j then

18 Q(i, j)← 2d(i)d(j)/(2m(2m− 1))
19 else

20 Q(i, j)← 0

21 Q← vector containing the upper triangular elements i ≤ j of Q(i, j)

22 r ←
(

n+1

2

)

23 for i← 1 to r − 1 do

24 for j ← 1 to r − 1 do

25 if i = j then

26 CovIEA(i, j)← mQ(i)(1−Q(i))
27 else

28 CovIEA(i, j)← −mQ(i)Q(j)

29 Max entropy MaxhIEA ← log
2

(

m+r−1

m

)

30 Entropy approximation ApxhIEA ← log
2

(

√

det(2πeCovIEA)
)

31 for i← 1 to m do

32 PIEA(i)← the pdf for the multinomial distribution with probabilities Q evaluated at each row
m(i)

33 foreach row i in PZ do

34 Weighted log-likelihood ratio LLR(i)← PZ(i) log2 (PZ(i)/PIEA(i))

35 Divergence D ← sum over all elements in LLR
36 return hRSM , MaxhRSM , ApxhRSM , MaxhIEA, ApxhIEA, D
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Algorithm 12: Entropy approximations of distributions of multigraphs under RSM

Input: Degree or stub multiplicity sequence d = (d1, d2, . . . , dn)
Output: Entropy H under RSM, and the two entropy approximations H∗ and H∗∗ based on

expected entropy and asymptotic entropy under ISA

1 Number of vertices n← number of columns in d

2 Number of edges m← half of the sum of all element values in d

3 Call Algorithm 11 for hRSM

4 H ← hRSM

5 prod← product over all the elements in d

6 if n > 2 then

7 H∗ ← log
2

(
√

(2πem)(
n

2
)2(

n−1

2
)prodn(1/2m)n2

)

8 else

9 H∗ ← log
2

(
√

(2πem)(
n

2
)prodn(1/2m)n2

)

10 p← vector containing each element in d divided by 2m
11 for i← 1 to n do

12 x(i)← −p(i) log
2
p(i)

13 hp ← sum over all elements in x

14 nc ← 2hp

15 rc ← n2

c2
−(nc−1)/nc

16 a∗∗ ← log
2

(

√

(2πe)rc−1(nnc
c )/(4πe)nc−1rrcc

)

17 b∗∗ ← (rc − nc)/2
18 H∗∗ ← a∗∗ + b∗∗ log

2
(m)

19 return H, H∗, H∗∗
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Algorithm 13: Approximations of the probability that an RSM multigraph is simple

Input: Degree or stub multiplicity sequence d = (d1, d2, . . . , dn)
Output: The probability that an RSM multigraph is simple PRSM , together with the three

approximation P1Asymp, P2Asymp and PPoisson

1 Number of vertices n← number of columns in d

2 Number of edges m← half of the sum of all element values in d

3 Call Algorithm 4 for m, m1, Im2
and Kd

4 foreach row i in m do

5 if m1(i) = 0 and Im2
(i) = 0 then

6 simple(i)← 1
7 else

8 simple(i)← 0

9 PRSM ← sum over all elements in simple divided by Kd

10 S ← sum over all squared elements in d

11 P1Asymp ← exp(−1/4(S/2m)2 + 1/4)
12 for i← 0 to n do

13 for j ← 0 to n do

14 if i = j then

15 L(i, j)← d(i)(d(i)− 1)/2m
16 else if i < j then

17 L(i, j)←
√

d(i)(d(i)− 1)d(j)(d(j)− 1)/2m
18 else

19 L(i, j)← 0

20 X ← L− log(1 + L)
21 Y ← matrix with elements above the diagonal in X
22 sum1← sum over the diagonal in L
23 sum2← sum over all rows and columns in Y
24 P2Asymp ← exp(−1/2(sum1)− sum2)
25 for i← 0 to n do

26 for j ← 0 to n do

27 if i = j then

28 Q(i, j)← (d(i)(d(i)− 1))/(2m(2m− 1))
29 else if i < j then

30 Q(i, j)← 2d(i)d(j)/(2m(2m− 1))
31 else

32 Q(i, j)← 0

33 for i← 0 to n do

34 for j ← 0 to n do

35 if i < j then

36 bin(i, j)← the pdf for the binomial distribution with parameters Q(i, j) and m
evaluated at point 1

37 λ← sum over all columns and rows in bin

38 PPoisson ← the pdf of the Poisson distribution with parameter λ evaluated at point m
39 return PRSM , P1Asymp, P2Asymp, PPoisson
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Algorithm 14: Distribution of the multiplicity sequence under an RSM, IEAS or ISA
model

Input: Model RSM(d), IEAS(d) or ISA(p), where d and p are specified
Output: Multiplicity sequences m and their probabilities probs under the specified model

1 r ←
(

n+1

2

)

2 if Model=RSM(d) then
3 Number of vertices n← number of columns in d

4 Number of edges m← half of the sum of all element values in d

5 Call Algorithm 4 for m and PZ

6 probs← PZ

7 else if Model=IEAS(d) then
8 Number of vertices n← number of columns in d

9 Number of edges m← half of the sum of all element values in d

10 Call Algorithm 11 for Q
11 Q← vector containing the upper triangular elements i ≤ j of Q(i, j)

12 m←
(

m+r−1

m

)

rows of possible multiplicity sequences under IEAS
13 foreach row i in m do

14 probs(i)← the pdf for the multinomial distribution with probabilities Q evaluated at each
row m(i)

15 else if Model=ISA(p) then
16 Number of vertices n← number of columns in p

17 Number of edges m← half of the sum of all element values in p

18 for i← 0 to n do

19 for j ← 0 to n do

20 if i = j then

21 Q(i, j)← p(i)2

22 else if i < j then

23 Q(i, j)← 2p(i)p(j)
24 else

25 Q(i, j)← 0

26 Q← vector containing the upper triangular elements i ≤ j of Q(i, j)

27 m←
(

m+r−1

m

)

rows of possible multiplicity sequences under ISA
28 foreach row i in m do

29 probs(i)← the pdf for the multinomial distribution with probabilities Q evaluated at each
row m(i)

30 return m, probs
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Algorithm 15: Statistical tests of a simple IEA hypothesis

Input: Model RSM(d), IEAS(d) or ISA(p), and hypothesis IEAS(d0) or ISA(p0) where d, d0, p and p0

are specified
Output: Outcomes of the Pearson goodness-of-fit statistic S with probabilities PS , and outcomes of the

divergence statistic T with probabilities PT

1 Call Algorithm 14 for m and probs according to input model
2 if Hypothesis=IEAS(d0) then

3 d← d0

4 Call Algorithm 11 for Q

5 Q← vector containing the upper triangular elements i ≤ j of Q(i, j)

6 m←
(m+r−1

m

)

rows of possible multiplicity sequences under IEAS

7 foreach row i in m do

8 OS(i)←m(i), ES(i)← mQ
9 foreach column j in m do

10 if ES(j) = 0 then

11 x(j)← 0
12 else

13 x(j)← (OS(j)− ES(j))
2/ES(j)

14 S(i)← sum over all columns in x

15 SUNI ← unique values of S
16 foreach row i in S do

17 PS(i)← sum over all probs where SUNI = S(i)

18 foreach row i in m do

19 OD(i)←m(i), ED(i)← mQ
20 foreach column j in m(i) do

21 if OD(j) > 0 and ED(j) > 0 then

22 x(j)← (OD(j)/m) log
2
(OD(j)/ED(j))

23 else

24 x(j)← 0

25 D(i)← sum over all columns in x
26 T (i)← 2mD(i)/ log

2
(e)

27 TUNI ← unique values of T
28 foreach row i in T do

29 PT (i)← sum over all probs where TUNI = T (i)

30 else if Hypothesis=ISA(p0) then

31 for i← 0 to n do

32 for j ← 0 to n do

33 if i = j then

34 Q(i, j)← p0(i)2

35 else if i < j then

36 Q(i, j)← 2p0(i)p0(j)
37 else

38 Q(i, j)← 0

39 Repeat steps 5-29

40 return SUNI , PS , TUNI , PT
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Algorithm 16: Statistical tests of a composite IEAS hypothesis

Input: Model RSM(d) IEAS(d) or ISA(p) and hypothesis IEAS
Output: Outcomes of the Pearson goodness-of-fit statistic S with probabilities PS , and outcomes of

the divergence statistic T with probabilities PT

1 Call Algorithm 14 for m and probs according to input model
2 foreach row i in m do

3 M ← upper triangular matrix containing the elements in m(i)
4 M ←M +M ′

5 dEST (i)← sum over all rows (or columns) in M
6 d← dEST (i)
7 Call Algorithm 11 for Q
8 Q← vector containing the upper triangular elements i ≤ j of Q(i, j)
9 OS(i)←m(i)

10 ES(i)← mQ
11 foreach column j in m do

12 if ES(j) = 0 then

13 x(j)← 0
14 else

15 x(j)← (OS(j)− ES(j))
2/ES(j)

16 S(i)← sum over all columns in x
17 OD(i)←m(i)
18 ED(i)← mQ
19 foreach column j in m(i) do
20 if OD(j) > 0 and ED(j) > 0 then

21 x(j)← (OD(j)/m) log
2
(OD(j)/ED(j))

22 else

23 x(j)← 0

24 D(i)← sum over all columns in x
25 T (i)← 2mD(i)/ log

2
(e)

26 Clear M ,d, Q, Q

27 SUNI ← unique values of S
28 foreach row i in S do

29 PS(i)← sum over all probs where SUNI = S(i)

30 TUNI ← unique values of T
31 foreach row i in T do

32 PT (i)← sum over all probs where TUNI = T (i)

33 return SUNI , PS , TUNI , PT
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Algorithm 17: Statistical tests of a composite ISA hypothesis

Input: Model RSM(d) IEAS(d) or ISA(p) and hypothesis ISA
Output: Outcomes of the Pearson goodness-of-fit statistic S with probabilities PS , and outcomes of

the divergence statistic T with probabilities PT

1 Call Algorithm 14 for m and probs according to input model
2 foreach row i in m do

3 M ← upper triangular matrix containing the elements in m(i)
4 M ←M +M ′

5 dEST (i)← sum over all rows (or columns) in M
6 pEST (i)← each element in dEST (i) divided by 2m
7 for i← 0 to n do

8 for j ← 0 to n do

9 if i = j then

10 Q(i, j)← pEST (i)
2

11 else if i < j then

12 Q(i, j)← 2pEST (i)pEST (j)
13 else

14 Q(i, j)← 0

15 Q(i)← the upper triangular elements i ≤ j of Q(i, j)
16 Clear M , Q

17 foreach row i in m do

18 Q← Q(i)
19 Repeat steps 9-25 inAlgorithm 16

20 Repeat steps 27-32 in Algorithm 16

21 return SUNI , PS , TUNI , PT
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